Patents by Inventor Theodore Smick

Theodore Smick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9887066
    Abstract: A system for controlling a high-power ion beam is disclosed, such as for steering, measuring, and/or dissipating the beam's power. In one embodiment, the ion beam can be controlled by being imparted into a cylindrical tube (e.g., a faraday cup), and deflected to strike an interior tube wall at an angle, thereby increasing an impact area of the beam on the wall. By also rotating the deflected beam around a circumference of the interior wall, the impact area of the ion beam may be further increased, thereby absorbing (dissipating) the high-power ion beam on the wall. In another embodiment, the ion beam may be passed through first, second, and third adjustable magnetic rings. By adjusting a relative angle between the rings and a combined rotation angle of all of the rings, a deflected ion beam may be rotated around a circumference of the interior wall of a power-absorbing tube, accordingly.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: February 6, 2018
    Assignee: NEUTRON THERAPEUTICS INC.
    Inventors: Geoffrey Ryding, Takao Sakase, Theodore Smick
  • Publication number: 20170178859
    Abstract: A system for controlling a high-power ion beam is disclosed, such as for steering, measuring, and/or dissipating the beam's power. In one embodiment, the ion beam can be controlled by being imparted into a cylindrical tube (e.g., a faraday cup), and deflected to strike an interior tube wall at an angle, thereby increasing an impact area of the beam on the wall. By also rotating the deflected beam around a circumference of the interior wall, the impact area of the ion beam may be further increased, thereby absorbing (dissipating) the high-power ion beam on the wall. In another embodiment, the ion beam may be passed through first, second, and third adjustable magnetic rings. By adjusting a relative angle between the rings and a combined rotation angle of all of the rings, a deflected ion beam may be rotated around a circumference of the interior wall of a power-absorbing tube, accordingly.
    Type: Application
    Filed: July 8, 2015
    Publication date: June 22, 2017
    Inventors: Geoffrey Ryding, Takao Sakase, Theodore Smick
  • Patent number: 8759803
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 24, 2014
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, Jr., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Publication number: 20140130741
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: GTAT CORPORATION
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, JR., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Patent number: 8633458
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 21, 2014
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, Jr., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Patent number: 8518724
    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 27, 2013
    Assignee: GTAT Corporation
    Inventors: Christopher J. Petti, Mohamed M. Hilali, Theodore Smick, Venkatesan Murali, Kathy J. Jackson, Zhiyong Li, Gopalakrishna Prabhu
  • Publication number: 20130119263
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, JR., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Patent number: 8437156
    Abstract: A voltage supply incorporates two voltage supplies connected in a mirror-image series arrangement to generate a DC voltage between the respective common terminals of the voltage supplies.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 7, 2013
    Assignee: GTAT Corporation
    Inventors: Steven Richards, Geoffrey Ryding, Theodore Smick
  • Publication number: 20130056655
    Abstract: An apparatus and a method of ion implantation using a rotary scan assembly having an axis of rotation and a periphery. A plurality of substrate holders is distributed about the periphery, and the substrate holders are arranged to hold respective planar substrates. Each planar substrate has a respective geometric center on the periphery. A beam line assembly provides a beam of ions for implantation in the planar substrates on the holders. The beam line assembly is arranged to direct said beam along a final beam path.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Theodore Smick, Geoffrey Ryding, Takao Sakase, William Park, JR., Joseph Gillespie, Ronald Horner, Paul Eide
  • Patent number: 8378317
    Abstract: An apparatus and a method of ion implantation using a rotary scan assembly having an axis of rotation and a periphery. A plurality of substrate holders is distributed about the periphery, and the substrate holders are arranged to hold respective planar substrates. Each planar substrate has a respective geometric center on the periphery. A beam line assembly provides a beam of ions for implantation in the planar substrates on the holders. The beam line assembly is arranged to direct said beam along a final beam path.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 19, 2013
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Takao Sakase, William Park, Jr., Joseph Gillespie, Ronald Horner, Paul Eide
  • Publication number: 20120291709
    Abstract: A method and apparatus for processing a substrate utilizing a rotating substrate support are disclosed herein. In one embodiment, an apparatus for processing a substrate includes a chamber having a substrate support assembly disposed within the chamber. The substrate support assembly includes a substrate support having a support surface and a heater disposed beneath the support surface. A shaft is coupled to the substrate support and a motor is coupled to the shaft through a rotor to provide rotary movement to the substrate support. A seal block is disposed around the rotor and forms a seal therewith. The seal block has at least one seal and at least one channel disposed along the interface between the seal block and the shaft. A port is coupled to each channel for connecting to a pump. A lift mechanism is coupled to the shaft for raising and lowering the substrate support.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jacob Smith, ALEXANDER TAM, R. SURYANARAYANAN IYER, SEAN SEUTTER, BINH TRAN, NIR MERRY, ADAM BRAILOVE, ROBERT SHYDO, JR., ROBERT ANDREWS, FRANK ROBERTS, THEODORE SMICK, GEOFFREY RYDING
  • Publication number: 20120220068
    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 30, 2012
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Christopher J. Petti, Mohamed M. Hilali, Theodore Smick, Venkatesan Murali, Kathy J. Jackson, Zhiyong Li, Gopalakrishna Prabhu
  • Patent number: 8227768
    Abstract: An ion implantation system configured to produce an ion beam is provided, wherein an end station has a robotic architecture having at least four degrees of freedom. An end effector operatively coupled to the robotic architecture selectively grips and translates a workpiece through the ion beam. The robotic architecture has a plurality of motors operatively coupled to the end station, each having a rotational shaft. At least a portion of each rotational shaft generally resides within the end station, and each of the plurality of motors has a linkage assembly respectively associated therewith, wherein each linkage assembly respectively has a crank arm and a strut. The crank arm of each linkage assembly is fixedly coupled to the respective rotational shaft, and the strut of each linkage assembly is pivotally coupled to the respective crank arm at a first joint, and pivotally coupled to the end effector at a second joint.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Ronald F. Horner, Paul Eide, Marvin Farley, Kan Ota
  • Patent number: 8227763
    Abstract: A sequence of series-connected transformers for transmitting power to high voltages incorporates an applied voltage distribution to maintain each transformer in the sequence below its withstanding voltage.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 24, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Steven Richards, Geoffrey Ryding, Theodore Smick
  • Patent number: 8173452
    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to a rigid or semi-rigid pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element; such adhesives may be unable to tolerate processing temperatures and conditions required to complete the device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 8, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Christopher J. Petti, Mohamed M. Hilali, Theodore Smick, Venkatesan Murali, Kathy J. Jackson, Zhiyong Li, Gopalakrishna Prabhu
  • Patent number: 8168941
    Abstract: An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 1, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Donald Polner, Geoffrey Ryding, Theodore Smick, Takao Sakase, Ronald Horner, Edward Eisner, Paul Eide, Brian Freer, Mark Lambert, Donovan Beckel
  • Patent number: 8124946
    Abstract: A system and method for magnetically filtering an ion beam during an ion implantation into a workpiece is provided, wherein ions are emitted from an ion source and accelerated the ions away from the ion source to form an ion beam. The ion beam is mass analyzed by a mass analyzer, wherein ions are selected. The ion beam is then decelerated via a decelerator once the ion beam is mass-analyzed, and the ion beam is further magnetically filtered the ion beam downstream of the deceleration. The magnetic filtering is provided by a quadrapole magnetic energy filter, wherein a magnetic field is formed for intercepting the ions in the ion beam exiting the decelerator to selectively filter undesirable ions and fast neutrals.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Axcelis Technologies Inc.
    Inventors: Geoffrey Ryding, Theodore Smick, Marvin Farley, Takao Sakase, Bo Vanderberg
  • Patent number: 8101451
    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to a rigid or semi-rigid pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element; such adhesives may be unable to tolerate processing temperatures and conditions required to complete the device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 24, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Venkatesan Murali, Christopher J Petti, Theodore Smick, Mohamed M Hilali, Kathy J Jackson, Zhiyong Li, Gopalakrishna Prabhu
  • Patent number: 7994486
    Abstract: This invention relates to an apparatus for scanning substrates through an ion beam in the process chamber of an ion implanter. The apparatus comprises a substrate carriage and reaction mass carriage movably mounted to a fixed base. The substrate carriage is adapted to support a substrate holder. Movement of the substrate carriage results in movement of the substrate holder, and substrate mounted therein, through the ion beam. The reaction mass carriage moves in the opposite direction to the substrate carriage to counter any reaction forces exerted on the fixed base as a result of acceleration of the substrate carriage.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Theodore Smick, Ronald Horner
  • Publication number: 20110042578
    Abstract: This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture.
    Type: Application
    Filed: October 28, 2010
    Publication date: February 24, 2011
    Inventors: Adrian Murrell, Bernard F. Harrison, Peter Edwards, Peter Kindersley, Robert Mitchell, Theodore Smick, Geoffrey Ryding, Marvin Farley, Takao Sakase