Patents by Inventor Theresa M. Meyer

Theresa M. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11529580
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: December 20, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Publication number: 20220088524
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 24, 2022
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Patent number: 11241646
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Publication number: 20210268420
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Patent number: 11040301
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: June 22, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Publication number: 20200368661
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Patent number: 10773200
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: September 15, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Publication number: 20200179860
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Patent number: 10610818
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: April 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, Eric C. Lobner, Theresa M. Meyer, Brian J. Stankiewicz
  • Patent number: 10410346
    Abstract: A method for detecting tooth wear using digital 3D models of teeth taken at different times. The digital 3D models of teeth are segmented to identify individual teeth within the digital 3D model. The segmentation includes performing a first segmentation method that over segments at least some of the teeth within the model and a second segmentation method that classifies points within the model as being either on an interior of a tooth or on a boundary between teeth. The results of the first and second segmentation methods are combined to generate segmented digital 3D models. The segmented digital 3D models of teeth are compared to detect tooth wear by determining differences between the segmented models, where the differences relate to the same tooth to detect wear on the tooth over time.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: September 10, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Guruprasad Somasundaram, Evan J. Ribnick, Ravishankar Sivalingam, Aya Eid, Theresa M. Meyer, Golshan Golnari, Anthony J. Sabelli
  • Publication number: 20170361259
    Abstract: Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
    Type: Application
    Filed: November 25, 2015
    Publication date: December 21, 2017
    Inventors: Andrew R. FOX, Eric C. LOBNER, Theresa M. MEYER, Brian J. STANKIEWICZ
  • Publication number: 20170178327
    Abstract: A method for detecting tooth wear using digital 3D models of teeth taken at different times. The digital 3D models of teeth are segmented to identify individual teeth within the digital 3D model. The segmentation includes performing a first segmentation method that over segments at least some of the teeth within the model and a second segmentation method that classifies points within the model as being either on an interior of a tooth or on a boundary between teeth. The results of the first and second segmentation methods are combined to generate segmented digital 3D models. The segmented digital 3D models of teeth are compared to detect tooth wear by determining differences between the segmented models, where the differences relate to the same tooth to detect wear on the tooth over time.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Guruprasad Somasundaram, Evan J. Ribnick, Ravishankar Sivalingam, Aya Eid, Theresa M. Meyer, Golshan Golnari, Anthony J. Sabelli
  • Patent number: 9626462
    Abstract: A method for detecting tooth wear using digital 3D models of teeth taken at different times. The digital 3D models of teeth are segmented to identify individual teeth within the digital 3D model. The segmentation includes performing a first segmentation method that over segments at least some of the teeth within the model and a second segmentation method that classifies points within the model as being either on an interior of a tooth or on a boundary between teeth. The results of the first and second segmentation methods are combined to generate segmented digital 3D models. The segmented digital 3D models of teeth are compared to detect tooth wear by determining differences between the segmented models, where the differences relate to the same tooth to detect wear on the tooth over time.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: April 18, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Guruprasad Somasundaram, Evan J. Ribnick, Ravishankar Sivalingam, Aya Eid, Theresa M. Meyer, Golshan Golnari, Anthony J. Sabelli
  • Publication number: 20160004811
    Abstract: A method for detecting tooth wear using digital 3D models of teeth taken at different times. The digital 3D models of teeth are segmented to identify individual teeth within the digital 3D model. The segmentation includes performing a first segmentation method that over segments at least some of the teeth within the model and a second segmentation method that classifies points within the model as being either on an interior of a tooth or on a boundary between teeth. The results of the first and second segmentation methods are combined to generate segmented digital 3D models. The segmented digital 3D models of teeth are compared to detect tooth wear by determining differences between the segmented models, where the differences relate to the same tooth to detect wear on the tooth over time.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: Guruprasad Somasundaram, Evan J. Ribnick, Ravishankar Sivalingam, Aya Eid, Theresa M. Meyer, Golshan Golnari, Anthony J. Sabelli
  • Patent number: 7613527
    Abstract: Computer-based techniques are described that use orthodontic prescription templates to assist an orthodontic practitioner in creating a patient-specific orthodontic prescription. In particular, an orthodontic practitioner may retrieve a stored electronic orthodontic prescription template. The practitioner may then generate an orthodontic prescription that is specific to a patient's teeth by modifying one or more bracket attributes of the template within orthodontic modeling software. Subsequently, the practitioner may communicate the patient-specific orthodontic prescription to a manufacturing facility that constructs an indirect bonding tray for use in physically placing brackets on the patient's teeth.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: November 3, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Richard E. Raby, Nicholas A. Stark, Peter M. Eisenberg, Theresa M. Meyer
  • Publication number: 20070218418
    Abstract: Computer-based techniques are described that use orthodontic prescription templates to assist an orthodontic practitioner in creating a patient-specific orthodontic prescription. In particular, an orthodontic practitioner may retrieve a stored electronic orthodontic prescription template. The practitioner may then generate an orthodontic prescription that is specific to a patient's teeth by modifying one or more bracket attributes of the template within orthodontic modeling software. Subsequently, the practitioner may communicate the patient-specific orthodontic prescription to a manufacturing facility that constructs an indirect bonding tray for use in physically placing brackets on the patient's teeth.
    Type: Application
    Filed: February 2, 2007
    Publication date: September 20, 2007
    Inventors: Richard E. Raby, Nicholas A. Stark, Peter M. Eisenberg, Theresa M. Meyer