Patents by Inventor Thi Xuyen Nguyen

Thi Xuyen Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11760656
    Abstract: Provided is a high entropy composite oxide of formula ([M1]pMnqFexCryNiz)3O4 having a spinel crystal, wherein the [M1], p, q, x, y and z are as defined in the specification. A method for producing the high entropy composite oxide, and anode materials including the same are further provided. With the entropy stabilization effect and plenty of oxygen vacancies, the anode materials including the high entropy composite oxide show the advantage of high Li+ transport rate, high electric capacity, redox durability, and good cycling stability, thereby having a bright prospect for application.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: September 19, 2023
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Jyh-Ming Ting, Thi-Xuyen Nguyen, Jeng-Kuei Chang, Jagabandhu Patra
  • Patent number: 11731996
    Abstract: Provided is a high-entropy composite glycerate represented by NiCrFeCoMn(C3H5O4)n and an electrocatalyst thereof, wherein n is a positive integer from 1 to 3, and wherein each of the Ni, Cr, Fe, Co and Mn includes an atom percent of 5 to 35 based on the total amount of the Ni, Cr, Fe, Co and Mn. Each of the metals is homogenously distributed within the high-entropy composite glycerate, and the high-entropy composite glycerate can reduce an overpotential for oxygen evolution reaction by the synergistic effect resulting from the structure formed by the quinary-metal glycerate. The high-entropy composite glycerate is suitable for catalyzing oxygen evolution reaction, and therefore has a prospect for application. Methods for preparing the high-entropy composite glycerate are also provided.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: August 22, 2023
    Assignee: National Cheng Kung University
    Inventors: Jyh-Ming Ting, Thi Xuyen Nguyen
  • Publication number: 20220402957
    Abstract: Provided is a high-entropy composite glycerate represented by NiCrFeCoMn(C3H5O4)n and an electrocatalyst thereof, wherein n is a positive integer from 1 to 3, and wherein each of the Ni, Cr, Fe, Co and Mn includes an atom percent of 5 to 35 based on the total amount of the Ni, Cr, Fe, Co and Mn. Each of the metals is homogenously distributed within the high-entropy composite glycerate, and the high-entropy composite glycerate can reduce an overpotential for oxygen evolution reaction by the synergistic effect resulting from the structure formed by the quinary-metal glycerate. The high-entropy composite glycerate is suitable for catalyzing oxygen evolution reaction, and therefore has a prospect for application. Methods for preparing the high-entropy composite glycerate are also provided.
    Type: Application
    Filed: October 14, 2021
    Publication date: December 22, 2022
    Inventors: Jyh-Ming Ting, Thi Xuyen Nguyen
  • Publication number: 20220135426
    Abstract: Provided is a high entropy composite oxide of formula ([M1]pMnqFexCryNiz)3O4 having a spinel crystal, wherein the [M1], p, q, x, y and z are as defined in the specification. A method for producing the high entropy composite oxide, and anode materials including the same are further provided. With the entropy stabilization effect and plenty of oxygen vacancies, the anode materials including the high entropy composite oxide show the advantage of high Li+ transport rate, high electric capacity, redox durability, and good cycling stability, thereby having a bright prospect for application.
    Type: Application
    Filed: March 16, 2021
    Publication date: May 5, 2022
    Inventors: Jyh-Ming Ting, Thi-Xuyen Nguyen, Jeng-Kuei Chang, Jagabandhu Patra
  • Patent number: 8845950
    Abstract: A method to manufacture a carbon fiber electrode comprises synthesizing polyamic acid (PAA) as a polyimide (PI) precursor from pryomellitic dian hydride (PMDA) and oxydianiline (ODA) as monomers and triethylamine (TEA) as a catalyst, adding dimethylformamide (DMF) to the polyamic acid (PAA) solution to prepare a spinning solution and subjecting the spinning solution to electrostatic spinning at a high voltage to obtain a PAA nanofiber paper, converting the PAA nanofiber paper into a polyimide (PI) nanofiber paper by heating, and converting the polyimide (PI) nanofiber paper into a carbon nanofiber (CNF) paper by heating under an Ar atmosphere. Also, the method to manufacture a polyimide carbon nanofiber electrode and/or a carbon nanotube composite electrode may utilize carbon nanofibers having diameters that are lessened by optimizing electrostatic spinning in order to improve spinnability.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae Wook Park, Hyong Soo Noh, Hideo Nojima, Thi Xuyen Nguyen, Chul Ho Song, Young Hee Lee
  • Publication number: 20090107842
    Abstract: A method to manufacture a carbon fiber electrode comprises synthesizing polyamic acid (PAA) as a polyimide (PI) precursor from pryomellitic dian hydride (PMDA) and oxydianiline (ODA) as monomers and triethylamine (TEA) as a catalyst, adding dimethylformamide (DMF) to the polyamic acid (PAA) solution to prepare a spinning solution and subjecting the spinning solution to electrostatic spinning at a high voltage to obtain a PAA nanofiber paper, converting the PAA nanofiber paper into a polyimide (PI) nanofiber paper by heating, and converting the polyimide (PI) nanofiber paper into a carbon nanofiber (CNF) paper by heating under an Ar atmosphere. Also, the method to manufacture a polyimide carbon nanofiber electrode and/or a carbon nanotube composite electrode may utilize carbon nanofibers having diameters that are lessened by optimizing electrostatic spinning in order to improve spinnability.
    Type: Application
    Filed: September 3, 2008
    Publication date: April 30, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae Wook Park, Hyong Soo Noh, Hideo Nojima, Thi Xuyen Nguyen, Chul Ho Song, Young Hee Lee