Patents by Inventor Thiago Macieira
Thiago Macieira has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12218795Abstract: The Internet can be configured to provide communications to a large number of Internet-of-Things (IoT) devices. Devices can be designed to address the need for network layers, from central servers, through gateways, down to edge devices, to grow unhindered, to discover and make accessible connected resources, and to support the ability to hide and compartmentalize connected resources. Network protocols can be part of the fabric supporting human accessible services that operate regardless of location, time, or space. Innovations can include service delivery and associated infrastructure, such as hardware and software. Services may be provided in accordance with specified Quality of Service (QoS) terms. The use of IoT devices and networks can be included in a heterogeneous network of connectivity including wired and wireless technologies.Type: GrantFiled: August 29, 2022Date of Patent: February 4, 2025Assignee: INTEL CORPORATIONInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Gregory Burns, Michael Nolan, John Brady, Cliodhna Ni Scanaill, Niall Cahill, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik, Davide Carboni, Eugene Ryan, Richard Davies, Toby M. Kohlenberg, Maarten Koning, Jakub Wenus, Rajesh Poornachandran, William C. Deleeuw, Ravikiran Chukka
-
Publication number: 20250039041Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust anchor, authenticator, key manager, and key generator.Type: ApplicationFiled: October 11, 2024Publication date: January 30, 2025Inventors: Ned M. Smith, Keith Nolan, Mark Kelly, Michael Nolan, John Brady, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik
-
Patent number: 12132609Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust anchor, authenticator, key manager, and key generator.Type: GrantFiled: March 23, 2022Date of Patent: October 29, 2024Assignee: Intel CorporationInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Michael Nolan, John Brady, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik
-
Publication number: 20230327878Abstract: A system includes processing circuitry; and a memory device including instructions embodied thereon, wherein the instructions, which when executed by the processing circuitry, configure the processing circuitry to perform operations comprising: accessing input data, at an aggregator node, the input data including sensor data from a plurality of sensor nodes, each sensor data having a respective signature; validating the sensor data by using respective cryptographic hash functions on the sensor data and evaluating the respective result using the respective signature; performing an aggregation function on the sensor data to produce aggregate data; executing a hash function on the aggregate data to produce a hash value for the aggregate data; bundling the sensor data, respective signatures of the sensor data, aggregate data, and hash value for the aggregate data in a data structure; and exposing the data structure to subscriber nodes on the IoT network.Type: ApplicationFiled: June 6, 2023Publication date: October 12, 2023Inventors: Thiago Macieira, Ned M. Smith, joseph Morrow
-
Patent number: 11695565Abstract: A system includes processing circuitry; and a memory device including instructions embodied thereon, wherein the instructions, which when executed by the processing circuitry, configure the processing circuitry to perform operations comprising: accessing input data, at an aggregator node, the input data including sensor data from a plurality of sensor nodes, each sensor data having a respective signature; validating the sensor data by using respective cryptographic hash functions on the sensor data and evaluating the respective result using the respective signature; performing an aggregation function on the sensor data to produce aggregate data; executing a hash function on the aggregate data to produce a hash value for the aggregate data; bundling the sensor data, respective signatures of the sensor data, aggregate data, and hash value for the aggregate data in a data structure; and exposing the data structure to subscriber nodes on the IoT network.Type: GrantFiled: August 28, 2020Date of Patent: July 4, 2023Assignee: Intel CorporationInventors: Thiago Macieira, Ned M. Smith, Joseph Morrow
-
Publication number: 20230110131Abstract: The Internet can be configured to provide communications to a large number of Internet-of-Things (IoT) devices. Devices can be designed to address the need for network layers, from central servers, through gateways, down to edge devices, to grow unhindered, to discover and make accessible connected resources, and to support the ability to hide and compartmentalize connected resources. Network protocols can be part of the fabric supporting human accessible services that operate regardless of location, time, or space. Innovations can include service delivery and associated infrastructure, such as hardware and software. Services may be provided in accordance with specified Quality of Service (QoS) terms. The use of IoT devices and networks can be included in a heterogeneous network of connectivity including wired and wireless technologies.Type: ApplicationFiled: August 29, 2022Publication date: April 13, 2023Inventors: Ned M. Smith, Keith Nolan, Mark Kelly, Gregory Burns, Michael Nolan, John Brady, Cliodhna Ni Scanaill, Niall Cahill, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik, Davide Carboni, Eugene Ryan, Richard Davies, Toby M. Kohlenberg, Maarten Koning, Jakub Wenus, Rajesh Poornachandran, William C. Deleeuw, Ravikiran Chukka
-
Publication number: 20220286354Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust anchor, authenticator, key manager, and key generator.Type: ApplicationFiled: March 23, 2022Publication date: September 8, 2022Inventors: Ned M. Smith, Keith Nolan, Mark Kelly, Michael Nolan, John Brady, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik
-
Patent number: 11431561Abstract: The Internet can be configured to provide communications to a large number of Internet-of-Things (IoT) devices. Devices can be designed to address the need for network layers, from central servers, through gateways, down to edge devices, to grow unhindered, to discover and make accessible connected resources, and to support the ability to hide and compartmentalize connected resources. Network protocols can be part of the fabric supporting human accessible services that operate regardless of location, time, or space. Innovations can include service delivery and associated infrastructure, such as hardware and software. Services may be provided in accordance with specified Quality of Service (QoS) terms. The use of IoT devices and networks can be included in a heterogeneous network of connectivity including wired and wireless technologies.Type: GrantFiled: December 28, 2017Date of Patent: August 30, 2022Assignee: INTEL CORPORATIONInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Gregory Burns, Michael Nolan, John Brady, Cliodhna Ni Scanaill, Niall Cahill, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik, Davide Carboni, Eugene Ryan, Richard Davies, Toby M. Kohlenberg, Maarten Koning, Jakub Wenus, Rajesh Poornachandran, William C. Deleeuw, Ravikiran Chukka
-
Patent number: 11290324Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust anchor, authenticator, key manager, and key generator.Type: GrantFiled: December 28, 2017Date of Patent: March 29, 2022Assignee: Intel CorporationInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Michael Nolan, John Brady, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik
-
Patent number: 11153150Abstract: Dynamically identifying and utilizing an opportunistic device by performing at least the following within a discovery offloading module: receive an offloading alert message from a service device, wherein the offloading alert message indicates the service device is unable to provide one or more services to the client device, receive a discovery message from a candidate device, wherein the discovery message indicates the candidate device is capable of performing the services provided to the client device, select, using the dedicated execution environment, an opportunistic service device based on the discovery message from the candidate device; and trigger the restart of host execution instruction within the client device by obtaining the one or more services from the opportunistic service device, wherein the discovery offloading module operates independently from the host execution instructions within the client device.Type: GrantFiled: July 15, 2019Date of Patent: October 19, 2021Assignee: McAfee, LLCInventors: Ned Smith, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Tobias Kohlenberg
-
Publication number: 20210091958Abstract: A system includes processing circuitry; and a memory device including instructions embodied thereon, wherein the instructions, which when executed by the processing circuitry, configure the processing circuitry to perform operations comprising: accessing input data, at an aggregator node, the input data including sensor data from a plurality of sensor nodes, each sensor data having a respective signature; validating the sensor data by using respective cryptographic hash functions on the sensor data and evaluating the respective result using the respective signature; performing an aggregation function on the sensor data to produce aggregate data; executing a hash function on the aggregate data to produce a hash value for the aggregate data; bundling the sensor data, respective signatures of the sensor data, aggregate data, and hash value for the aggregate data in a data structure; and exposing the data structure to subscriber nodes on the IoT network.Type: ApplicationFiled: August 28, 2020Publication date: March 25, 2021Inventors: Thiago Macieira, Ned M. Smith, Joseph Morrow
-
Patent number: 10764058Abstract: A system includes processing circuitry; and a memory device including instructions embodied thereon, wherein the instructions, which when executed by the processing circuitry, configure the processing circuitry to perform operations comprising: accessing input data, at an aggregator node, the input data including sensor data from a plurality of sensor nodes, each sensor data having a respective signature; validating the sensor data by using respective cryptographic hash functions on the sensor data and evaluating the respective result using the respective signature; performing an aggregation function on the sensor data to produce aggregate data; executing a hash function on the aggregate data to produce a hash value for the aggregate data bundling the sensor data, respective signatures of the sensor data, aggregate data, and hash value for the aggregate data in a data structure; and exposing the data structure to subscriber nodes on the IoT network.Type: GrantFiled: June 29, 2018Date of Patent: September 1, 2020Assignee: Intel CorporationInventors: Thiago Macieira, Ned M. Smith, Joseph Morrow
-
Publication number: 20190349426Abstract: The Internet can be configured to provide communications to a large number of Internet-of-Things (IoT) devices. Devices can be designed to address the need for network layers, from central servers, through gateways, down to edge devices, to grow unhindered, to discover and make accessible connected resources, and to support the ability to hide and compartmentalize connected resources. Network protocols can be part of the fabric supporting human accessible services that operate regardless of location, time, or space. Innovations can include service delivery and associated infrastructure, such as hardware and software. Services may be provided in accordance with specified Quality of Service (QoS) terms. The use of IoT devices and networks can be included in a heterogeneous network of connectivity including wired and wireless technologies.Type: ApplicationFiled: December 28, 2017Publication date: November 14, 2019Applicant: Intel CorporationInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Gregory Burns, Michael Nolan, John Brady, Cliodhna Ni Scanaill, Niall Cahill, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik, Davide Carboni, Eugene Ryan, Richard Davies, Toby M. Kohlenberg, Maarten Koning, Jakub Wenus, Rajesh Poornachandran, William C. Deleeuw, Ravikiran Chukka
-
Publication number: 20190349190Abstract: A trusted communications environment includes a primary participant with a group creator and a distributed ledger, and a secondary participant with communication credentials. An Internet of Things (IoT) network includes a trusted execution environment with a chain history for a blockchain, a root-of-trust for chaining, and a root-of-trust for archives. An IoT network includes an IoT device with a communication system, an onboarding tool, a device discoverer, a trust builder, a shared domain creator, and a shared resource directory. An IoT network includes an IoT device with a communication system, a policy decision engine, a policy repository, a policy enforcement engine, and a peer monitor. An IoT network includes an IoT device with a host environment and a trusted reliability engine to apply a failover action if the host environment fails. An IoT network includes an IoT server including secure booter/measurer, trust anchor, authenticator, key manager, and key generator.Type: ApplicationFiled: December 28, 2017Publication date: November 14, 2019Applicant: INTEL CORPORATIONInventors: Ned M. Smith, Keith Nolan, Mark Kelly, Michael Nolan, John Brady, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Igor Muttik
-
Publication number: 20190342150Abstract: Dynamically identifying and utilizing an opportunistic device by performing at least the following within a discovery offloading module: receive an offloading alert message from a service device, wherein the offloading alert message indicates the service device is unable to provide one or more services to the client device, receive a discovery message from a candidate device, wherein the discovery message indicates the candidate device is capable of performing the services provided to the client device, select, using the dedicated execution environment, an opportunistic service device based on the discovery message from the candidate device; and trigger the restart of host execution instruction within the client device by obtaining the one or more services from the opportunistic service device, wherein the discovery offloading module operates independently from the host execution instructions within the client device.Type: ApplicationFiled: July 15, 2019Publication date: November 7, 2019Inventors: Ned Smith, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Tobias Kohlenberg
-
Patent number: 10355916Abstract: Dynamically identifying and utilizing an opportunistic device by performing at least the following within a discovery offloading module: receive an offloading alert message from a service device, wherein the offloading alert message indicates the service device is unable to provide one or more services to the client device, receive a discovery message from a candidate device, wherein the discovery message indicates the candidate device is capable of performing the services provided to the client device, select, using the dedicated execution environment, an opportunistic service device based on the discovery message from the candidate device; and trigger the restart of host execution instruction within the client device by obtaining the one or more services from the opportunistic service device, wherein the discovery offloading module operates independently from the host execution instructions within the client device.Type: GrantFiled: September 27, 2016Date of Patent: July 16, 2019Assignee: McAfee, LLCInventors: Ned Smith, Thiago Macieira, Zheng Zhang, Glen J. Anderson, Tobias Kohlenberg
-
Publication number: 20190044726Abstract: A system includes processing circuitry; and a memory device including instructions embodied thereon, wherein the instructions, which when executed by the processing circuitry, configure the processing circuitry to perform operations comprising: accessing input data, at an aggregator node, the input data including sensor data from a plurality of sensor nodes, each sensor data having a respective signature; validating the sensor data by using respective cryptographic hash functions on the sensor data and evaluating the respective result using the respective signature; performing an aggregation function on the sensor data to produce aggregate data; executing a hash function on the aggregate data to produce a hash value for the aggregate data bundling the sensor data, respective signatures of the sensor data, aggregate data, and hash value for the aggregate data in a data structure; and exposing the data structure to subscriber nodes on the IoT network.Type: ApplicationFiled: June 29, 2018Publication date: February 7, 2019Inventors: Thiago Macieira, Ned M. Smith, Joseph Morrow