Patents by Inventor Thibault Kervyn De Meerendre

Thibault Kervyn De Meerendre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210238811
    Abstract: Embodiments of the present disclosure are directed to an artificial turf filament formed from a formulation comprising an ethylene-based polymer having a density 0.900 g/c to 0.955 g/cc and a melt index (I2) of 0.1 g/10 min to 20 g/10 min as measured according to ASTM D1238 (at 190° C., 2.16 kg), and one or more polydimethylsiloxane (PDMS) components having a number average molecular weight (Mn) of from 10,000 g/mol to 500,000 g/mol, wherein the Mn is measured by Gel Permeation Chromatography (GPC).
    Type: Application
    Filed: May 3, 2019
    Publication date: August 5, 2021
    Applicants: Dow Global Technologies LLC, Dow Silicones Corporation
    Inventors: Eduardo Alvarez, David Lopez, Cosme Llop, Thibault Kervyn De Meerendre, Celine Chevallier
  • Publication number: 20210009768
    Abstract: This disclosure relates to a shaped article made from thermoplastic material which may be a thermoplastic elastomeric material containing a masterbatch of a stick-slip modifier having one or more thermoplastic silicone vulcanisates, an assembly comprising the article and a process for making the shaped article.
    Type: Application
    Filed: April 4, 2019
    Publication date: January 14, 2021
    Inventors: VINCENT RERAT, YANN GRADELET, SYLVAIN BOUCARD, CLEMENT DESCAMPS, THIBAULT KERVYN DE MEERENDRE
  • Patent number: 8859929
    Abstract: An apparatus is described for depositing a film on a substrate from a plasma. The apparatus comprises an enclosure, a plurality of plasma generator elements disposed within the enclosure, and means, also within the enclosure, for supporting the substrate. Each plasma generator element comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna, the outlet being located in, or above, the hot electron confinement envelope.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 14, 2014
    Assignees: Dow Corning Corporation, Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 8635972
    Abstract: A plasma excitation device is described for use in depositing a film on a substrate from a plasma formed by distributed electron cyclotron resonance. The device comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 28, 2014
    Assignees: Ecole Polytechnique, Dow Corning Corporation
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 8383210
    Abstract: A method is described of depositing film of an amorphous or microcrystalline material, for example silicon, from a plasma on to a substrate. Microwave energy is introduced into a chamber as a sequence of discrete microwave pulses, a film precursors gas is introduced into the chamber as a sequence of discrete gas pulses, and gas for generating atomic hydrogen is supplied to the chamber at least during each microwave pulse. Each microwave pulse is followed in non-overlapping fashion with a precursor gas pulse, and each precursor gas pulse is followed by a period during which there is neither a microwave pulse nor a precursor gas pulse.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 26, 2013
    Assignees: Dow Corning Europe S.A., Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 8349412
    Abstract: A method is described for forming a film of amorphous silicon (a-Si:H) on a substrate by deposition from a plasma. The substrate is placed in an enclosure, a film precursor gas is introduced into the enclosure, and unreacted and dissociated gas is extracted from the enclosure so as to provide a low pressure in the enclosure. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The substrate is held during deposition at a temperature in the range 200-600° C., preferably 225-350° C. and a bias voltage is applied to the substrate at a level to give rise to a sheath potential in the range ?30 to ?105V, preferably using a source of RF power in the range of 50-250 mW/cm2 of the area of the substrate holder.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: January 8, 2013
    Assignees: Ecole Polytechnique, Dow Corning Corporation
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Thien Hai Dao, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 7998785
    Abstract: A method is described of forming a film of an amorphous material on a substrate (14) by deposition from a plasma. The substrate (14) is placed in an enclosure, a film precursor gas is introduced into the enclosure through pipes (20), and unreacted and dissociated gas is extracted from the enclosure through pipes (22) so as to provide a low pressure therein. Microwave energy—is introduced into the gas within the enclosure as a sequence of pulses at a given frequency and power level to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The frequency and/or power level of the pulses is altered during the course of deposition of material, so as to cause the bandgap to vary over the thickness of the deposited material.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 16, 2011
    Assignees: Dow Corning Corporation, Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Patent number: 7964438
    Abstract: A method is described of forming a film of an amorphous material on a substrate by deposition from a plasma. The substrate is placed in an enclosure, a film precursor gas is introduced into the enclosure, and unreacted and dissociated gas is extracted from the enclosure so as to provide a low pressure therein. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The said flow rate of the film precursor gas is altered during the course of deposition of material, so as to cause the bandgap to vary over the thickness of the deposited material.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 21, 2011
    Assignees: Dow Corning Corporation, Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100105195
    Abstract: An apparatus is described for depositing a film on a substrate from a plasma. The apparatus comprises an enclosure, a plurality of plasma generator elements disposed within the enclosure, and means, also within the enclosure, for supporting the substrate. Each plasma generator element comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna, the outlet being located in, or above, the hot electron confinement envelope.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 29, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100075458
    Abstract: A method is described of forming a film of an amorphous material on a substrate (14) by deposition from a plasma. The substrate (14) is placed in an enclosure, a film precursor gas is introduced into the enclosure through pipes (20), and unreacted and dissociated gas is extracted from the enclosure through pipes (22) so as to provide a low pressure therein. Microwave energy—is introduced into the gas within the enclosure as a sequence of pulses at a given frequency and power level to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The frequency and/or power level of the pulses is altered during the course of deposition of material, so as to cause the bandgap to vary over the thickness of the deposited material.
    Type: Application
    Filed: October 26, 2007
    Publication date: March 25, 2010
    Applicants: Dow Corning Corporation, Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100075065
    Abstract: A method is disclosed for forming a film of an amorphous material, for example amorphous silicon, on a substrate (14), by deposition from a plasma. A substrate is placed in an enclosure having a defined volume, and a film precursor gas, for example silane, is introduced into the enclosure through pipes (20). Unreacted and dissociated gas is extracted from the enclosure through exit (22) so as to provide a low pressure in the enclosure. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distribution electron cyclotron resonance, and cause material to be deposited from the plasma on the substrate. The normalised precursor gas flow rate, defined as the precursor gas flow rate, divided by the area of the distributed plasma source, is greater than or equal to 700 sccm/m2, and the gas residence time, defined as the volume of the reactor divided by the effective precursor gas pumping rate, is not more than 30 ms.
    Type: Application
    Filed: October 26, 2007
    Publication date: March 25, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Thien Hai Dao, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100071621
    Abstract: A plasma excitation device is described for use in depositing a film on a substrate from a plasma formed by distributed electron cyclotron resonance. The device comprises a microwave antenna having an end from which microwaves are emitted, a magnet disposed in the region of the said antenna end and defining therewith an electron cyclotron resonance region in which a plasma can be generated, and a gas entry element having an outlet for a film precursor gas or a plasma gas. The outlet is arranged to direct gas towards a film deposition area situated beyond the magnet, as considered from the microwave antenna.
    Type: Application
    Filed: October 26, 2007
    Publication date: March 25, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100068415
    Abstract: A method is described for forming a film of amorphous silicon (a-Si:H) on a substrate by deposition from a plasma. The substrate is placed in an enclosure, a film precursor gas is introduced into the enclosure, and unreacted and dissociated gas is extracted from the enclosure so as to provide a low pressure in the enclosure. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The substrate is held during deposition at a temperature in the range 200-600° C., preferably 225-350° C. and a bias voltage is applied to the substrate at a level to give rise to a sheath potential in the range ?30 to ?105V, preferably using a source of RF power in the range of 50-250 mW/cm2 of the area of the substrate holder.
    Type: Application
    Filed: November 14, 2006
    Publication date: March 18, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Thien Hai Dao, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100062561
    Abstract: A method is described of forming a film of an amorphous material on a substrate by deposition from a plasma. The substrate is placed in an enclosure, a film precursor gas is introduced into the enclosure, and unreacted and dissociated gas is extracted from the enclosure so as to provide a low pressure therein. Microwave energy is introduced into the gas within the enclosure to produce a plasma therein by distributed electron cyclotron resonance (DECR) and cause material to be deposited from the plasma on the substrate. The said flow rate of the film precursor gas is altered during the course of deposition of material, so as to cause the bandgap to vary over the thickness of the deposited material.
    Type: Application
    Filed: October 26, 2007
    Publication date: March 11, 2010
    Applicant: Dow Corning Corporation
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre
  • Publication number: 20100047473
    Abstract: A method is described of depositing film of an amorphous or microcrystalline material, for example silicon, from a plasma on to a substrate. Microwave energy is introduced into a chamber as a sequence of discrete microwave pulses, a film precursors gas is introduced into the chamber as a sequence of discrete gas pulses, and gas for generating atomic hydrogen is supplied to the chamber at least during each microwave pulse. Each microwave pulse is followed in non-overlapping fashion with a precursor gas pulse, and each precursor gas pulse is followed by a period during which there is neither a microwave pulse nor a precursor gas pulse.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 25, 2010
    Applicants: DOW CORNING CORPORATION, ECOLE POLYTECHNIQUE
    Inventors: Pere Roca I Cabarrocas, Pavel Bulkin, Dmitri Daineka, Patrick Leempoel, Pierre Descamps, Thibault Kervyn De Meerendre