Patents by Inventor Thierry Drezen

Thierry Drezen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190333709
    Abstract: The invention relates to a process for the preparation of a cylindrical alkali metal-ion hybrid supercapacitor and to a cylindrical alkali metal-ion hybrid supercapacitor obtained according to said process.
    Type: Application
    Filed: July 24, 2017
    Publication date: October 31, 2019
    Inventors: Olivier CAUMONT, Thierry DREZEN
  • Patent number: 10205158
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 12, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Patent number: 9960413
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 1, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li, Murali G. Theivanayagam, Ing-feng Hu, Xindi Yu, Stacie L. Santhany, Christopher P. Rentsch
  • Publication number: 20180040883
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 8, 2018
    Applicant: Dow Global Technologies LLC
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Patent number: 9793538
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: October 17, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Publication number: 20160197347
    Abstract: LMFP cathode materials are made in a mechanochemical/solid state process. The precursors are dried in a preliminary step to reduce the water content of the precursors of less than 1% by weight and preferably less than 0.25% by weight. The dried precursors are then dry milled and calcined to form particles of an olivine LMFP. The product has excellent specific capacity and capacity retention.
    Type: Application
    Filed: September 18, 2014
    Publication date: July 7, 2016
    Inventors: Michael S. Paquette, Michael M. Olken, Thierry Drezen
  • Publication number: 20160172716
    Abstract: The invention relates to an assembly for storing electrical energy (1), comprising: an envelope comprising a body (10) having at least one side wall (11) and at least one open end, and at least one cover (20) for closing the at least one open end of the body; at least one energy storage element (50) arranged inside the envelope; and an electrolyte solution also inside the envelope. The invention is characterised in that the storage assembly also comprises: a pressure-increasing accelerator (40) for generating an overpressure inside the assembly when the temperature inside the assembly is higher than a temperature threshold, especially at between 120° C. and 140° C.; and means (30) for the local fracturing of the envelope when the pressure inside the envelope is higher than a pressure threshold.
    Type: Application
    Filed: July 15, 2014
    Publication date: June 16, 2016
    Inventors: Eric Baylard, Thierry Drezen
  • Publication number: 20150311527
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 29, 2015
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Publication number: 20150311505
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 29, 2015
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li, Murali G. Theivanayagam, Ing-feng HU, Xindi Yu, Stacie L. Santhany, Christopher P. Rentsch
  • Patent number: 8357468
    Abstract: The present invention concerns a carbon coated lithium metal phosphate material containing a manganese oxide layer between the LiMnPO4 material or the C/LiMn1-x ZxPO4 material, where Z=Fe, Co, Ni, Mg, Ca, Al, Zr, V, Ti and x=0.01-0.3, and the carbon layer.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 22, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Ivan Exnar, Thierry Drezen, Marketa Zukalova, James Miners, Otakar Frank, Ladislav Kavan
  • Patent number: 8313863
    Abstract: Novel process for the preparation of finely divided, nano-structured, olivine lithium metal phosphates (LiMPO4) (where metal M is iron, cobalt, manganese, nickel, vanadium, copper, titanium and mix of them) materials have been developed. This so called Polyol” method consists of heating of suited precursor materials in a multivalent, high-boiling point multivalent alcohol like glycols with the general formula HO—(—C2H4O—), —H where n=1-10 or HO—(—C3H6O—)n—H where n=1-10, or other polyols with the general formula HOCH2—(—C3H5OH—)n—H where n=1-10, like for example the tridecane-1,4,7,10,13-pentaol. A novel method for implementing the resulting materials as cathode materials for Li.-ion batteries is also developed.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: November 20, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Ivan Exnar, Thierry Drezen
  • Patent number: 8133616
    Abstract: A process for the production of nano-structured olivine lithium manganese phosphate (LiMnPO4) electrode material comprising of the following steps: sol gel preparation in a chelating environment; preparation of lithium manganese phosphate/carbon composite by ball-milling; and electrode preparation.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: March 13, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Ivan Exnar, Thierry Drezen, Nam Hee Kwon-Roth, Motoshi Isono
  • Publication number: 20100178562
    Abstract: The present invention concerns a carbon coated lithium metal phosphate material containing a manganese oxide layer between the LiMnPO4 material or the C/LiMn1-x ZxPO4 material, where Z?Fe, Co, Ni, Mg, Ca, Al, Zr, V, Ti and x=0.01-0.3, and the carbon layer.
    Type: Application
    Filed: July 3, 2008
    Publication date: July 15, 2010
    Applicant: Dow Global Technologies
    Inventors: Ivan Exnar, Thierry Drezen, Marketa Zukalova, James Miners, Otakar Frank, Ladislav Kavan
  • Patent number: 7749658
    Abstract: The main object of the invention is to obtain LiMnPO4 having an excellent crystalline and a high purity at a lower temperature. The present invention provides a method for manufacturing LiMnPO4 including the steps of: precipitating for obtaining precipitate of manganese hydroxide (Mn(OH)x) by adding a precipitant to a Mn source solution in which a Mn source is dissolved; reducing for obtaining a reduced dispersion solution by dispersing the precipitate in a reducing solvent; adding for obtaining an added dispersion solution by adding a Li source solution and a P source solution to the reduced dispersion solution; pH adjusting for adjusting the pH of the added dispersion solution in the range of 3 to 6 to obtain a pH-adjusted dispersion solution; and synthesizing for synthesizing by reacting the pH-controlled dispersion solution by a heating under pressure condition.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: July 6, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Dow Global Technologies Inc.
    Inventors: Motoshi Isono, Thierry Drezen, Ivan Exnar, Ivo Teerlinck
  • Publication number: 20090184296
    Abstract: The main object of the invention is to obtain LiMnPO4 having an excellent crystalline and a high purity at a lower temperature. The present invention provides a method for manufacturing LiMnPO4 including the steps of: precipitating for obtaining precipitate of manganese hydroxide (Mn(OH)x) by adding a precipitant to a Mn source solution in which a Mn source is dissolved; reducing for obtaining a reduced dispersion solution by dispersing the precipitate in a reducing solvent; adding for obtaining an added dispersion solution by adding a Li source solution and a P source solution to the reduced dispersion solution; pH adjusting for adjusting the pH of the added dispersion solution in the range of 3 to 6 to obtain a pH-adjusted dispersion solution; and synthesizing for synthesizing by reacting the pH-controlled dispersion solution by a heating under pressure condition.
    Type: Application
    Filed: October 27, 2006
    Publication date: July 23, 2009
    Inventors: Motoshi Isono, Thierry Drezen, Ivan Exnar, Ivo Teerlinck
  • Publication number: 20090186275
    Abstract: Novel process for the preparation of finely divided, nano-structured, olivine lithium metal phosphates (LiMPO.sub.4) (where metal M is iron, cobalt, manganese, nickel, vanadium, copper, titanium and mix of them) materials have been developed. This so called Polyol” method consists of heating of suited precursor materials in a multivalent, high-boiling point multivalent alcohol like glycols with the general formula HO—(—C2H4O—).sub.n-H where n=1-10 or HO—(—C3H6O—).sub.n.-H where n=1-10, or other polyols with the general formula HOCH2—(—C3H5OH—).sub.n-H where n=1-10, like for example the tridecane-1,4,7,10,13-pentaol. A novel method for implementing the resulting materials as cathode materials for Li.-ion batteries is also developed.
    Type: Application
    Filed: April 6, 2006
    Publication date: July 23, 2009
    Inventors: Ivan Exnar, Thierry Drezen
  • Publication number: 20090130560
    Abstract: A process for the production of nano-structured olivine lithium manganese phosphate (LiMnPO.sub.4) electrode material comprising of the following steps: sol gel preparation in a chelating environment; preparation of lithium manganese phosphate/carbon composite by ball-milling; and electrode preparation.
    Type: Application
    Filed: February 13, 2006
    Publication date: May 21, 2009
    Inventors: Ivan Exnar, Thierry Drezen, Nam Hee Kwon-Roth, Motoshi Isono