Patents by Inventor Thierry Waeckerle

Thierry Waeckerle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240035139
    Abstract: The invention relates to a substantially equiatomic FeCo-alloy cold-rolled strip or sheet, and to a magnetic part cut from same, as well as to a method for fabricating a Fe—Co-alloy cold-rolled strip or sheet. A fully recrystallized hot-rolled sheet or strip is prepared, with a thickness of 1.5-2.5 mm and the following composition: 47.0%?Co?51.0%; traces?V+W?3.0%; traces?Ta+Zr?0.5%; traces?Nb?0.5%; traces?B?0.05%; traces?Si?3.0%; traces?Cr?3.0%; traces?Ni?5.0%; traces?Mn?2.0%; traces?O?0.03%; traces?N?0.03%; traces?S?0.005%; traces?P?0.015; traces?Mo?0.3%; traces?Cu?0.5%; traces?Al?0.01%; traces?Ti?0.01%; traces?Ca+Mg?0.05%; traces?rare earths?500 ppm; the remainder being iron and impurities. A first cold-rolling step is carried out with a reduction rate of 70 to 90%, to bring the strip or sheet to a thickness of ?1 mm.
    Type: Application
    Filed: December 9, 2020
    Publication date: February 1, 2024
    Inventors: Thierry Waeckerle, Rémy Batonnet
  • Patent number: 11767583
    Abstract: Sheet or strip of cold-rolled and annealed ferrous alloy (1), characterized in that its composition is, in weight percentages: traces?Co?40%; if Co?35%, traces?Si?1.0%; if traces?Co<35%, traces?Si?3.5%; if traces?Co<35%, Si+0.6% Al?4.5?0.1% Co; traces?Cr<10%; traces?V+W+Mo+Ni?4%; traces?Mn?4%; traces Al?3%; traces?S?0.005%; traces?P?0.007%; traces?Ni?3%; traces?Cu?0.5%; traces?Nb?0.1%; traces?Zr?0.1%; traces?Ti?0.2%; traces?N?0.01%; traces?Ca?0.01%; traces?Mg?0.01%; traces?Ta?0.01%; traces?B?0.005%; traces?O?0.01%; the remainder being iron and impurities resulting from the preparation, in that, for an induction of 1.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: September 26, 2023
    Assignee: APERAM
    Inventors: Thierry Waeckerle, Thierry Baudin, Anne-Laure Helbert, Olivier Hubert, Rémy Batonnet
  • Patent number: 11626234
    Abstract: A transformer core includes two stacks, each of first thickness with ?1 flat parts, the cutting directions rectilinear and parallel or perpendicular to one another, the stacks facing across a gap, the flat parts made of an austenitic FeNi alloy 30-80% Ni and 10% alloying elements, with a sharp {100} <001> cubic texture, the cutting directions of the flat parts parallel to the rolling or transverse direction, the flat parts having magnetic losses, for a maximum induction of 1 T, <20 W/kg at 400 Hz, producing apparent magnetostriction for maximum induction values and field directions as follows: 1.2 T<5 ppm, large side of the sample parallel to rolling direction; 1.2 T<5 ppm, large side of the sample parallel to transverse direction in the rolling plane; and 1.2 T<10 ppm, length direction parallel to intermediate direction 45° to rolling and transverse directions.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 11, 2023
    Assignee: APERAM
    Inventors: Thierry Waeckerle, Olivier Hubert
  • Patent number: 11600439
    Abstract: Method for manufacturing a thin strip in a soft magnetic alloy and strip obtained A method for manufacturing a strip in a soft magnetic alloy capable of being cut out mechanically, the chemical composition of which comprises by weight: 18% ? Co ? 55% 0% ? V + W ? 3% 0% ? Cr ? 3% 0% ? Si ? 3% 0% ? Nb ? 0.5% 0% ? B ? 0.05% 0% ? C ? 0.1% 0% ? Zr + Ta ? 0.5% 0% ? Ni ? 5% 0% ? Mn ? 2% The remainder being iron and impurities resulting from the elaboration, according to which a strip obtained by hot rolling is cold-rolled in order to obtain a cold-rolled strip with a thickness of less than 0.6 mm. After cold rolling, a continuous annealing treatment is carried out by passing into a continuous oven, at a temperature comprised between the order/disorder transition temperature of the alloy and the onset temperature of ferritic/austenitic transformation of the alloy, followed by rapid cooling down to a temperature below 200° C. Strip obtained.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 7, 2023
    Assignee: APERAM
    Inventors: Thierry Waeckerle, Rémy Batonnet
  • Patent number: 10957481
    Abstract: A method for manufacturing a strip in a soft magnetic alloy capable of being cut out mechanically, the chemical composition of which comprises by weight: 18%?Co?55% 0%?V+W?3% 0%?Cr?3% 0%?Si?3% 0%?Nb?0.5% 0%?B?0.05% 0%?C?0.1% 0%?Zr+Ta?0.5% 0%?Ni?5% 0%?Mn?2% The remainder being iron and impurities resulting from the elaboration, according to which a strip obtained by hot rolling is cold-rolled in order to obtain a cold-rolled strip with a thickness of less than 0.6 mm. After cold rolling, a continuous annealing treatment is carried out by passing into a continuous oven, at a temperature comprised between the order/disorder transition temperature of the alloy and the onset temperature of ferritic/austenitic transformation of the alloy, followed by rapid cooling down to a temperature below 200° C. Strip obtained.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: March 23, 2021
    Assignee: APERAM
    Inventors: Thierry Waeckerle, Remy Batonnet
  • Publication number: 20200294715
    Abstract: Method for manufacturing a thin strip in a soft magnetic alloy and strip obtained A method for manufacturing a strip in a soft magnetic alloy capable of being cut out mechanically, the chemical composition of which comprises by weight: 18% ? Co ? 55% 0% ? V + W ? 3% 0% ? Cr ? 3% 0% ? Si ? 3% 0% ? Nb ? 0.5% 0% ? B ? 0.05% 0% ? C ? 0.1% 0% ? Zr + Ta ? 0.5% 0% ? Ni ? 5% 0% ? Mn ? 2% The remainder being iron and impurities resulting from the elaboration, according to which a strip obtained by hot rolling is cold-rolled in order to obtain a cold-rolled strip with a thickness of less than 0.6 mm. After cold rolling, a continuous annealing treatment is carried out by passing into a continuous oven, at a temperature comprised between the order/disorder transition temperature of the alloy and the onset temperature of ferritic/austenitic transformation of the alloy, followed by rapid cooling down to a temperature below 200° C. Strip obtained.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Thierry WAECKERLE, Rémy BATONNET
  • Publication number: 20200027641
    Abstract: A transformer core includes two stacks, each of first thickness with ?1 flat parts, the cutting directions rectilinear and parallel or perpendicular to one another, the stacks facing across a gap, the flat parts made of an austenitic FeNi alloy 30-80% Ni and 10% alloying elements, with a sharp {100} <001> cubic texture, the cutting directions of the fiat parts parallel to the rolling or transverse direction, the flat parts having magnetic losses, for a maximum induction of 1 T, <20 W/kg at 400 Hz, producing apparent magnetostriction for maximum induction values and field directions as follows: 1.2 T<5 ppm, large side of the sample parallel to rolling direction; 1.2 T<5 ppm, large side of the sample parallel to transverse direction in the rolling plane; and 1.2 T<10 ppm, length direction parallel to intermediate direction 45° to rolling and transverse directions.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 23, 2020
    Inventors: Thierry WAECKERLE, Olivier HUBERT
  • Patent number: 10515756
    Abstract: Disclosed is a basic module of a magnetic core of a wound electrical transformer. The basic module includes first and second windings placed atop one another and made of first and second materials, respectively. The first material is a crystal having a saturation magnetization?1.5 T and magnetic losses less than 20 W/kg in sine waves having a frequency of 400 Hz, for maximum induction of 1 T, and the second material is a material having an apparent saturation magnetostriction less than or equal to 5 ppm and magnetic losses less than 20 W/kg in sine waves having a frequency of 400 Hz, for maximum induction of 1 T. The cross-sections of the first winding and cross-sections of the second winding satisfy (S1/(S1+S3); S2/(S2+S4)) of the first material, having a high saturation magnetization, compared to the cross-section of both materials together, is 2%-50%.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: December 24, 2019
    Assignee: APERAM
    Inventors: Thierry Waeckerle, Alain Demier
  • Publication number: 20180223401
    Abstract: Sheet or strip of cold-rolled and annealed ferrous alloy (1), characterized in that its composition is, in weight percentages: traces?Co?40%; if Co?35%, traces?Si?1.0%; if traces?Co<35%, traces?Si?3.5%; if traces?Co<35%, Si+0.6% Al?4.5?0.1% Co; traces?Cr<10%; traces?V+W+Mo+Ni?4%; traces?Mn?4%; traces Al?3%; traces?S?0.005%; traces?P?0.007%; traces?Ni?3%; traces?Cu?0.5%; traces?Nb?0.1%; traces?Zr?0.1%; traces?Ti?0.2%; traces?N?0.01%; traces?Ca?0.01%; traces?Mg?0.01%; traces?Ta?0.01%; traces?B?0.005%; traces?O?0.01%; the remainder being iron and impurities resulting from the preparation, in that, for an induction of 1.
    Type: Application
    Filed: July 29, 2016
    Publication date: August 9, 2018
    Inventors: Thierry WAECKERLE, Thierry BAUDIN, Anne-Laure HELBERT, Olivier HUBERT, Rémy BATONNET
  • Publication number: 20170345554
    Abstract: Disclosed is a basic module of a magnetic core of a wound electrical transformer. The basic module includes first and second windings placed atop one another and made of first and second materials, respectively. The first material is a crystal having a saturation magnetization ?1.5 T and magnetic losses less than 20 W/kg in sine waves having a frequency of 400 Hz, for maximum induction of 1 T, and the second material is a material having an apparent saturation magnetostriction less than or equal to 5 ppm and magnetic losses less than 20 W/kg in sine waves having a frequency of 400 Hz, for maximum induction of 1 T. The cross-sections of the first winding and cross-sections of the second winding satisfy (S1/(S1+S3); S2/(S2+S4)) of the first material, having a high saturation magnetization, compared to the cross-section of both materials together, is 2%-50%.
    Type: Application
    Filed: November 25, 2014
    Publication date: November 30, 2017
    Applicant: APERAM
    Inventors: Thierry WAECKERLE, Alain DEMIER
  • Patent number: 9566721
    Abstract: An induction-heated mold, including at least one lower portion and one upper portion defining a cavity inside of which a molding material is to be brought to a temperature Ttr greater than 20° C., which is introduced and then shaped, at least one of the mold portions having an area for transferring heat with the molding material, the heat transfer area including at least one sub-area consisting of at least one ferromagnetic material the Curie point Tc of which is between 20 and 800° C. and which is in contact with the molding material and/or with a non-ferromagnetic coating having a thermal conductivity greater than 30 W.m?1.K?1. A method for manufacturing a plastic or composite material product via of the molds according to the invention.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: February 14, 2017
    Assignee: APERAM
    Inventor: Thierry Waeckerle
  • Patent number: 8951364
    Abstract: The invention relates to an Fe—Co alloy, the composition of which comprises in % by weight: 6?Co+Ni?22 Si?0.2 0.5?Cr?8 Ni?4 0.10?Mn?0.90 Al?4 Ti?1 C?1 Mo?3 V+W?3 Nb+Ta?1 Si+Al?6 O+N+S+P+B?0.1 the balance of the composition consisting of iron and inevitable impurities due to the smelting, it being furthermore understood that the contents thereof satisfy the following relationships: Co+Si?Cr?27 Si+Al+Cr+V+Mo+Ti?3.5 1.23(Al+Mo)+0.84(Si+Cr+V)?1.3 14.5(Al+Cr)+12(V+Mo)+25 Si?50.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: February 10, 2015
    Assignee: Aperam Alloys Imphy
    Inventors: Thierry Waeckerle, Herve Fraisse
  • Publication number: 20140299233
    Abstract: A method for manufacturing a strip in a soft magnetic alloy capable of being cut out mechanically, the chemical composition of which comprises by weight: 18%?Co?55% 0%?V+W?3% 0%?Cr?3% 0%?Si?3% 0%?Nb?0.5% 0%?B?0.05% 0%?C?0.1% 0%?Zr+Ta?0.5% 0%?Ni?5% 0%?Mn?2% The remainder being iron and impurities resulting from the elaboration, according to which a strip obtained by hot rolling is cold-rolled in order to obtain a cold-rolled strip with a thickness of less than 0.6 mm. After cold rolling, a continuous annealing treatment is carried out by passing into a continuous oven, at a temperature comprised between the order/disorder transition temperature of the alloy and the onset temperature of ferritic/austenitic transformation of the alloy, followed by rapid cooling down to a temperature below 200° C. Strip obtained.
    Type: Application
    Filed: December 17, 2012
    Publication date: October 9, 2014
    Applicant: APERAM
    Inventors: Thierry Waeckerle, Remy Batonnet
  • Publication number: 20140283953
    Abstract: Method for producing a soft magnetic alloy strip suited to be mechanically cut, having a chemical composition comprising, by weight: 18% ?? Co ? 55%? 0% ? V + W ? 3% 0% ? Cr ? 3% 0% ? Si ? 3% 0% ? Nb ? 0.5%? 0% ? B ? 0.05%?? 0% ? C ? 0.1%? 0% ? Zr + Ta ? 0.5%? 0% ? Ni ? 5% 0% ? Mn ? 2% the rest being iron and impurities from production, according to which a strip obtained by hot rolling a semi-finished product consisting of the alloy is cold-rolled to obtain a cold-rolled strip with a thickness less than 0.6 mm, After the cold rolling, the strip is running annealed by passing it through a continuous furnace at a temperature between the order/disorder transition temperature of the alloy and the ferritic/austenitic transformation point of the alloy, followed by rapid cooling to a temperature below 200° C.
    Type: Application
    Filed: December 16, 2011
    Publication date: September 25, 2014
    Applicant: APERAM
    Inventors: Thierry Waeckerle, Remy Batonnet
  • Patent number: 8808468
    Abstract: The invention relates to a Fe—Si—La alloy having the atomic composition: (La1-a-a?MmaTRa?)1[(Fe1-b-b?CObMb?)1-x(Si1-cXc)x]13(CdNeH1-d-e)y(R)z(I)f Mm representing a mixture of lanthanum, cerium, neodymium and praseodynium in the weight proportion of 22 to 26% La, 48 to 53% Ce, 17 to 20% Nd and 5 to 7% Pr, the said mixture possibly comprising up to 1% by weight of impurities, TR representing one or more elements of the rare earth family other than lanthanum, M representing one or more type d transition elements of the 3d, 4d and 5d layers X representing a metalloid element selected from Ge, Al, B, Ga and In R representing one or more elements selected from Al, Ca, Mg, K and Na, I representing one or two elements selected from O and S, with: 0?a<0.5 and 0?a?<0.2 0?b?0.2 and 0?b?<0.4 0?c?0.5 and 0?d?1 0?e?1 and f?0.1 0.09?x?0.13 and 0.002?y?4 0.0001?z?0.01 the subscripts b, d, e, x and y being such that the alloy further satisfies the following condition: 6.143b(13(1?x))+4.437y[1?0.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: August 19, 2014
    Assignee: Aperam Alloys Imphy
    Inventors: Thierry Waeckerle, Herve Fraisse, Mohamed Balli, Patricia De Rango, Daniel Fruchart, Damien Gignoux, Salvatore Miraglia, Mariana Rosca, Miguel Jose Artigas Alava
  • Publication number: 20130075956
    Abstract: An induction-heated mold, including at least one lower portion and one upper portion defining a cavity inside of which a molding material is to be brought to a temperature Ttr greater than 20° C., which is introduced and then shaped, at least one of the mold portions having an area for transferring heat with the molding material, the heat transfer area including at least one sub-area consisting of at least one ferromagnetic material the Curie point Tc of which is between 20 and 800° C. and which is in contact with the molding material and/or with a non-ferromagnetic coating having a thermal conductivity greater than 30 W.m?1.K?1. A method for manufacturing a plastic or composite material product via of the molds according to the invention.
    Type: Application
    Filed: February 23, 2011
    Publication date: March 28, 2013
    Applicant: APERAM
    Inventor: Thierry Waeckerle
  • Patent number: 7905966
    Abstract: The invention relates to a method of producing a strip of nanocrystalline material which is obtained from a wound ribbon that is cast in an amorphous state, having atomic composition [Fe1?a?bCoaNib]100?x?y?z??????CuxSiyBzNb?M??M??, M? being at least one of elements V, Cr, Al and Zn, and M? being at least one of elements C, Ge, P, Ga, Sb, In and Be, with: a ?0.07 and b ?0.1, 0.5 ?x ?1.5 and 2 ???5, 10?y?16.9 and 5?z?8, ??2 and ??2. According to the invention, the amorphous ribbon is subjected to crystallization annealing, in which the ribbon undergoes annealing in the unwound state, passing through at least two S-shaped blocks under voltage along an essentially longitudinal axial direction of the ribbon, such that the ribbon is maintained at an annealing temperature of between 530° C. and 700° C. for between 5 and 120 seconds and under axial tensile stress of between 2 and 1000 MPa.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 15, 2011
    Assignee: Imphy Alloys
    Inventors: Thierry Waeckerle, Thierry Save, Alain Demier
  • Publication number: 20110020661
    Abstract: The invention relates to a Fe—Si—La alloy having the following atomic composition: (La1-a-a?MmaTRa?)1[(Fe1-b-b,CobMb,)1-x(Si1-cXc)x]13(CdNeH1-d-e)y(R)r(I)r, in which Mm is a mixture of lanthanum, cerium, neodymium and praseodymium in a weight proportion of 22 to 26% of La, 48 to 53% of Ce, 17 to 20% of Nd and 5 to 7% of Pr, wherein said mixture may include up to 1 wt % of impurities, TR is one or more elements of the rare earth family other than lanthanum, M is one or more d-type transition element from layers 3d, 4d and 5d, X is a metalloid element selected from Ge, Al, B, Ga and In, R is one or more element selected from Al, Ca, Mg, K and Na, I is one or two elements selected from O and S, with: 0?a<0.5 and 0?a?<0.2; 0?b?0.2 and 0?b?<0.4; 0?c?0.5 and 0?d?1; 0?e?1 and f?0.1; 0.09?x?0.13 and 0.002?y?4; 0.0001?z?0.01; the indicia b, d, e, x and y being such that the alloy further meets the following condition: 6.143b(13(1?x))+4.437y[1?0.0614(d++e)]?1 Eq.1 d*y?0.005 Eq.2.
    Type: Application
    Filed: December 15, 2008
    Publication date: January 27, 2011
    Applicants: ARCELORMITTAL-STAINLESS & NICKEL ALLOYS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Thierry Waeckerle, Herve Fraisse, Mohamed Balli, Patricia De Rango, Daniel Fruchart, Damien Gignoux, Salvatore Miraglia, Mariana Rosca, Miguel Jose Artigas Alava
  • Publication number: 20110018658
    Abstract: The invention relates to an Fe-Co alloy, the composition of which comprises in % by weight: 6?Co+Ni?22 Si?0.2 0.5?Cr?8 Ni?4 0.10?Mn?0.90 Al?4 Ti?1 C?1 Mo?3 V+W?3 Nb+Ta?1 Si+Al?6 O+N+S+P+B?0.1 the balance of the composition consisting of iron and inevitable impurities due to the smelting, it being furthermore understood that the contents thereof satisfy the following relationships: Co+Si?Cr?27 Si+Al+Cr+V+Mo+Ti?3.5 1.23(Al+Mo)+0.84(Si+Cr+V)?1.3 14.5(Al+Cr)+12(V+Mo)+25 Si ?50.
    Type: Application
    Filed: January 14, 2009
    Publication date: January 27, 2011
    Applicant: ARCELORMITTAL-STAINLESS & NICKEL ALLOYS
    Inventors: Thierry Waeckerle, Herve Fraisse
  • Patent number: 7819990
    Abstract: An iron-cobalt alloy containing in weight percentages: 10 to 22% of Co; traces to 2.5% of Si; traces to 2% of Al; 0.1 to 1% of Mn; traces to 0.0100% of C, a total of O, N and S content ranging between traces of 0.0070%; a total of Si, Al, Cr, Mo, V, Mn content ranging between 1.1 and 3.5%; a total of Cr, Mo and V content ranging between traces of 3%; a total of Ta and Nb content ranging between traces and 1%; and the rest being iron and impurities resulting from production wherein: 1.23×(Al+Mo) %+0.84 (Si+Cr+V) %?0.15×(Co %?15)?2.1, and 14.5×(Al+Cr) %+12×(V+Mo) %+25×Si %?21. The inventive alloy is useful for making electromagnetic actuator mobile cores.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: October 26, 2010
    Assignee: Imphy Ugine Precision
    Inventors: Thierry Waeckerle, Lucien Coutu, Marc Leroy, Laurent Chaput, Herve Fraisse