Patents by Inventor Thilo Elsässer

Thilo Elsässer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10634624
    Abstract: The device relates to a method and a device (10) for determining an irradiation plan for a particle irradiation unit (20). In the method, a target volume (6) within a test object (14; 18) is irradiated with a particle beam (16) using the particle irradiation unit (20) according to the irradiation plan. The radiation plan is determined in order to apply the energy of the particle beam (16) according to a predetermined dose distribution in the target volume (6), the target volume (6) and the predetermined dose distribution being pre-set. When determining the irradiation plan, irradiation duration is also taken into account, the irradiation plan being determined such that the irradiation duration is as short as possible.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 28, 2020
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thilo Elsässer, Alexander Gemmel, Thomas Hansmann, Eike Rietzel
  • Patent number: 10039512
    Abstract: A method is provided for detecting a movement of a body between acquisition times of at least two acquisition data sets, wherein, for virtual sectional planes of the body, a first intermediate function value of attenuation values of all the body elements lying in the sectional plane is determined based on a first acquisition data set, and a second intermediate function value of the attenuation values is determined based on a second acquisition data set. For each sectional plane, a difference value is determined from the intermediate function values. A total error value for the two acquisition data sets is calculated by combining the difference values of all the sectional planes. The virtual sectional planes have a common line of intersection, and for the particular acquisition time, the difference between pairs of the sectional lines is at least one pixel.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 7, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Thilo Elsässer, Robert Frysch, Georg Rose
  • Patent number: 9750956
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 5, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Publication number: 20170086767
    Abstract: A method is provided for detecting a movement of a body between acquisition times of at least two acquisition data sets, wherein, for virtual sectional planes of the body, a first intermediate function value of attenuation values of all the body elements lying in the sectional plane is determined based on a first acquisition data set, and a second intermediate function value of the attenuation values is determined based on a second acquisition data set. For each sectional plane, a difference value is determined from the intermediate function values. A total error value for the two acquisition data sets is calculated by combining the difference values of all the sectional planes. The virtual sectional planes have a common line of intersection, and for the particular acquisition time, the difference between pairs of the sectional lines is at least one pixel.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 30, 2017
    Inventors: Thilo Elsässer, Robert Frysch, Georg Rose
  • Patent number: 9370671
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 21, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150217135
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Application
    Filed: June 11, 2013
    Publication date: August 6, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150196781
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Application
    Filed: June 7, 2013
    Publication date: July 16, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Publication number: 20150100250
    Abstract: The device relates to a method and a device (10) for determining an irradiation plan for a particle irradiation unit (20). In the method, a target volume (6) within a test object (14; 18) is irradiated with a particle beam (16) using the particle irradiation unit (20) according to the irradiation plan. The radiation plan is determined in order to apply the energy of the particle beam (16) according to a predetermined dose distribution in the target volume (6), the target volume (6) and the predetermined dose distribution being pre-set. When determining the irradiation plan, irradiation duration is also taken into account, the irradiation plan being determined such that the irradiation duration is as short as possible.
    Type: Application
    Filed: March 28, 2013
    Publication date: April 9, 2015
    Inventors: Thilo Elsässer, Alexander Gemmel, Thomas Hansmann, Eike Rietzel