Patents by Inventor Thilo Zachau

Thilo Zachau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12246980
    Abstract: The invention relates to a method for producing a glass substrate for vehicle glazing, in particular for a windscreen of a vehicle, which comprises hot forming of a borosilicate glass, wherein in a hot forming section, at least during stretching of the glass (8) in the flow direction or longitudinal direction of movement of the glass (8), an aging velocity Av of the glass (8) to be hot formed does not exceed 10 mm/s and an aging velocity Av of the glass preferably does not undershoot 3 mm/s, and also relates to glass substrates for vehicle glazing produced by such method as well as to windscreen projection devices and driver assistance systems comprising such glass substrates.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: March 11, 2025
    Assignee: SCHOTT AG
    Inventors: Thomas Seuthe, Thilo Zachau, Thomas Schmiady, Sandra von Fintel, Jochen Alkemper
  • Publication number: 20240391215
    Abstract: A composite glass includes two glass panes with a glass pane having coated regions and including a glass having SiO2 and B2O3 and a first side and a second side; a coating applied in at least one region of the second side, the coating taking the form of an enamel coating having at least one pigment, a vitreous constituent, and pores; and a polymeric layer disposed between the glass panes, a polymer in the polymeric layer being in uncolored form, and at least a portion of the polymeric layer in the at least one region of the coating at least partly fills the pores of the coating so a color locus of the composite glass in the at least one region in which the coating is applied given in the CIEL*a*b* system where L* is at most and a* and b* are each in a range between +5 and ?5.
    Type: Application
    Filed: May 22, 2024
    Publication date: November 28, 2024
    Applicants: Schott AG, SCHOTT Technical Glass Solutions GmbH
    Inventors: Thilo Zachau, Yvonne Menke-Berg, Hubert Wieseke
  • Patent number: 12005687
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: June 11, 2024
    Assignee: SCHOTT AG
    Inventors: Armin Vogl, Thomas Schmiady, Thilo Zachau, Jochen Alkemper, Michael Meister, Christian Kunert, Lutz Klippe, Rüdiger Dietrich
  • Patent number: 11890844
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 6, 2024
    Assignee: SCHOTT AG
    Inventors: Armin Vogl, Thomas Schmiady, Thilo Zachau, Jochen Alkemper, Michael Meister, Christian Kunert, Lutz Klippe, Rüdiger Dietrich
  • Patent number: 11745459
    Abstract: Thin glass substrates are provided. Also provided are methods and apparatuses for the production thereof and provides a thin glass substrate of improved optical quality. The method includes, after the melting and before a hot forming process, adjusting the viscosity of the glass that is to be formed or has at least partially been formed is in a defined manner for the thin glass substrate to be obtained. The apparatus includes a device for melting, a device for hot forming, and also a device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate, and the device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate is arranged upstream of the device for hot forming.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 5, 2023
    Assignee: SCHOTT AG
    Inventors: Armin Vogl, Thomas Schmiady, Thilo Zachau, Michael Meister, Jochen Alkemper, Christian Kunert, Lutz Klippe, Rüdiger Dietrich
  • Patent number: 11712868
    Abstract: A vehicle glass sheet is provided that includes a borosilicate glass with a thickness between 1.1 mm and 5.4 mm and a two-dimensional area for a sensor assigned to this two-dimensional area. The two-dimensional area has an inclination (?) with respect to an upward direction (S) perpendicular to a main direction of movement (V) of the vehicle that is in a range between 35° and 65°.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: August 1, 2023
    Assignee: SCHOTT AG
    Inventors: Juliane Brandt-Slowik, Thilo Zachau, Hubert Wieseke
  • Publication number: 20230191741
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Jochen ALKEMPER, Michael MEISTER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Publication number: 20220063231
    Abstract: A vehicle glass sheet is provided that includes a borosilicate glass with a thickness between 1.1 mm and 5.4 mm and a two-dimensional area for a sensor assigned to this two-dimensional area. The two-dimensional area has an inclination (?) with respect to an upward direction (S) perpendicular to a main direction of movement (V) of the vehicle that is in a range between 35° and 65°.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Applicant: SCHOTT AG
    Inventors: Juliane Brandt-Slowik, Thilo Zachau, Hubert Wieseke
  • Publication number: 20200354253
    Abstract: The invention relates to a method for producing a glass substrate for vehicle glazing, in particular for a windscreen of a vehicle, which comprises hot forming of a borosilicate glass, wherein in a hot forming section, at least during stretching of the glass (8) in the flow direction or longitudinal direction of movement of the glass (8), an aging velocity Av of the glass (8) to be hot formed does not exceed 10 mm/s and an aging velocity Av of the glass preferably does not undershoot 3 mm/s, and also relates to glass substrates for vehicle glazing produced by such method as well as to windscreen projection devices and driver assistance systems comprising such glass substrates.
    Type: Application
    Filed: March 4, 2020
    Publication date: November 12, 2020
    Applicant: SCHOTT AG
    Inventors: Thomas Seuthe, Thilo Zachau, Thomas Schmiady, Sandra von Fintel, Jochen Alkemper
  • Publication number: 20200238664
    Abstract: Thin glass substrates are provided. Also provided are methods and apparatuses for the production thereof and provides a thin glass substrate of improved optical quality. The method includes, after the melting and before a hot forming process, adjusting the viscosity of the glass that is to be formed or has at least partially been formed is in a defined manner for the thin glass substrate to be obtained. The apparatus includes a device for melting, a device for hot forming, and also a device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate, and the device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate is arranged upstream of the device for hot forming.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Michael MEISTER, Jochen ALKEMPER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Publication number: 20190308900
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Jochen ALKEMPER, Michael MEISTER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Patent number: 9199873
    Abstract: The process for producing a transparent lithium aluminosilicate glass ceramic plate includes ceramicizing a green glass body of the Li2O—Al2O—SiO2 system using a ceramization program, which includes heating it, for the purpose of nucleation, to a temperature of 750° C.±20° C. and maintaining the temperature for 20±15 minutes, further heating the green glass body, for the purpose of ceramization, to a temperature of 900±20° C. and maintaining the to temperature for 20±15 minutes and then cooling to room temperature. The transparent plate has a thermal expansion coefficient (CTE) from ?0.15×10?6/K to +0.15×10?6/K at 30 to 700° C. and a brightness value observed at an angle of 2° of ?80 for a 4-mm thick plate for transmitted normal light.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 1, 2015
    Assignee: SCHOTT AG
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Publication number: 20150285595
    Abstract: Armored glasses for windows in all kinds of vehicles, aircraft, missiles of all types, marine and underwater vehicles of all types and/or buildings and manufacturing methods are provided. The armored glass is a composite having at least one opto-ceramic layer having a front side and a rear side and a film of a transparent material disposed on the front and/or rear side of the opto-ceramic layer and integrally connected to the opto-ceramic layer so that the transparency of the composite is greater than the transparency of the opto-ceramic layer alone. The film of the transparent material renders roughnesses of the front and/or rear side of the opto-ceramic layer substantially optically ineffective.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Inventors: Petra AUCHTER-KRUMMEL, Wolfram BEIER, Bernd HOPPE, Yvonne MENKE, Thilo ZACHAU
  • Publication number: 20150128646
    Abstract: The process for producing a transparent lithium aluminosilicate glass ceramic plate includes ceramicizing a green glass body of the Li2O—Al2O—SiO2 system using a ceramization program, which includes heating it, for the purpose of nucleation, to a temperature of 750° C.±20° C. and maintaining the temperature for 20±15 minutes, further heating the green glass body, for the purpose of ceramization, to a temperature of 900±20° C. and maintaining the to temperature for 20±15 minutes and then cooling to room temperature. The transparent plate has a thermal expansion coefficient (CTE) from ?0.15×10?6/K to +0.15×10?6/K at 30 to 700° C. and a brightness value observed at an angle of 2° of ?80 for a 4-mm thick plate for transmitted normal light.
    Type: Application
    Filed: December 5, 2012
    Publication date: May 14, 2015
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Publication number: 20150132560
    Abstract: The armored or bulletproof glass include a transparent plate laminate, which includes one or more transparent glass ceramic plates made from a green glass body of the Li2O—Al2O3—SiO2 system, optionally one or more additional plates made of plastic material, and optionally one or more glass plates. The glass ceramic plate preferably has a thermal expansion coefficient of ?0.05×10?6/K to ?0.10×10?6/K at 30 to 700° C. and a brightness value for transmitted normal light at an angle of 2°?80 for a 4-mm thick plate. The transparent plate laminate preferably has a total of 4 to 8 plates and a thickness between 40 and 80 mm. A bulletproof vest, a fire prevention glazing, a fireplace viewing window pane, a cooktop, a magnetic storage plate or a substrate for semiconductor materials also advantageously include the transparent plate laminate described here.
    Type: Application
    Filed: December 10, 2012
    Publication date: May 14, 2015
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Publication number: 20140162039
    Abstract: The armored or bulletproof glass include a transparent plate laminate, which includes one or more transparent glass ceramic plates made from a green glass body of the Li2O—Al2O3—SiO2 system, optionally one or more additional plates made of plastic material, and optionally one or more glass plates. The glass ceramic plate preferably has a thermal expansion coefficient of ?0.05×10?6/K to ?0.10×10?6/K at 30 to 700° C. and a brightness value for transmitted normal light at an angle of 2°?80 for a 4-mm thick plate. The transparent plate laminate preferably has a total of 4 to 8 plates and a thickness between 40 and 80 mm. A bulletproof vest, a fire prevention glazing, a fireplace viewing window pane, a cooktop, a magnetic storage plate or a substrate for semiconductor materials also advantageously include the transparent plate laminate described here.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Publication number: 20140150500
    Abstract: The process for producing a transparent lithium aluminosilicate glass ceramic plate includes ceramicizing a green glass body of the Li2O—Al2O—SiO2 system using a ceramization program, which includes heating it, for the purpose of nucleation, to a temperature of 750° C.±20° C. and maintaining the temperature for 20±15 minutes, further heating the green glass body, for the purpose of ceramization, to a temperature of 900±20° C. and maintaining the to temperature for 20±15 minutes and then cooling to room temperature. The transparent plate has a thermal expansion coefficient (CTE) from ?0.15×10?6/K to +0.15×10?6/K at 30 to 700° C. and a brightness value observed at an angle of 2° of ?80 for a 4-mm thick plate for transmitted normal light.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Patent number: 8609561
    Abstract: A colorless transparent colloid-former-containing glass that is convertible into a colorless transparent glass ceramic or a metal colloid-colored glass ceramic via respective heat treatments contains a combination of one or more metal colloid formers and one or more redox partners. The metal colloid formers are preferably oxides containing Au, Ag, As, Bi, Nb, Cu, Fe, Pd, Pt, Sb and/or Sn. The redox partners are preferably oxides containing As, Ce, Fe, Mn, Sb, Sn and/or W, with the proviso that the redox partner must be different from the metal colloid former. The glass advantageously contains from 0.97 to 1.9 wt. % SnO2, 0.93 to 3.0 wt. % As2O3, or 1.59 to 6.0 wt. % of Sb2O3 as redox partner.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Schott AG
    Inventors: Meike Schneider, Thilo Zachau, Friedrich Siebers, Wolfgang Schmidbauer
  • Patent number: 8568550
    Abstract: A method for the production of protection devices is provided. The method includes the step of providing a tile package. The provision of the tile package includes the steps of: laminating at least one board of a tile material onto a polymer foil; scoring the board on the side which is opposite to the polymer foil; and fracturing the board along the scoring lines for achieving a plurality of tiles which are fixed on the polymer foil.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 29, 2013
    Assignee: Schott AG
    Inventors: Thilo Zachau, Helga Goetz, Stefan Haase, Andreas Habeck, Stephan Corvers, Volker Plapper
  • Patent number: 8534179
    Abstract: An exemplary embodiment provides transparent reactive armor systems that are far lighter than conventional reactive armor systems due to the materials used therein. The reactive armor of embodiments of the present invention is composed of at least three layers. These layers are—from the outside to the inside—the front plate, the explosives layer and the explosives substrate as well as optional further inside layers with antiballistic effects. Consequently, the explosives substrate can be part of a multilayer laminate.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: September 17, 2013
    Assignee: Schott AG
    Inventors: Thilo Zachau, Stephen Corvers