Patents by Inventor Thoe MICHAELOS
Thoe MICHAELOS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12183739Abstract: Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.Type: GrantFiled: December 18, 2020Date of Patent: December 31, 2024Assignee: Intel CorporationInventors: Nicole Thomas, Eric Mattson, Sudarat Lee, Scott B. Clendenning, Tobias Brown-Heft, I-Cheng Tung, Thoe Michaelos, Gilbert Dewey, Charles Kuo, Matthew Metz, Marko Radosavljevic, Charles Mokhtarzadeh
-
Patent number: 12148734Abstract: Disclosed herein are transistors, memory cells, and arrangements thereof. For example, in some embodiments, an integrated circuit (IC) structure may include a plurality of transistors, wherein the transistors are distributed in a hexagonally packed arrangement. In another example, in some embodiments, an IC structure may include a memory cell including an axially symmetric transistor coupled to an axially symmetric capacitor, wherein the axis of the transistor is aligned with the axis of the capacitor.Type: GrantFiled: December 10, 2020Date of Patent: November 19, 2024Assignee: Intel CorporationInventors: Sarah Atanasov, Abhishek A. Sharma, Bernhard Sell, Chieh-Jen Ku, Elliot Tan, Hui Jae Yoo, Noriyuki Sato, Travis W. Lajoie, Van H. Le, Thoe Michaelos
-
Publication number: 20240332389Abstract: Embodiments disclosed herein include semiconductor devices and methods of making such devices. In an embodiment, the semiconductor device comprises a plurality of stacked semiconductor channels comprising first semiconductor channels and second semiconductor channels over the first semiconductor channels. In an embodiment a spacing is between the first semiconductor channels and the second semiconductor channels. The semiconductor device further comprises a gate dielectric surrounding individual ones of the semiconductor channels of the plurality of stacked semiconductor channels. In an embodiment, a first workfunction metal surrounds the first semiconductor channels, and a second workfunction metal surrounds the second semiconductor channels.Type: ApplicationFiled: June 6, 2024Publication date: October 3, 2024Inventors: Nicole THOMAS, Michael K. HARPER, Leonard P. GULER, Marko RADOSAVLJEVIC, Thoe MICHAELOS
-
Patent number: 12046652Abstract: Embodiments disclosed herein include semiconductor devices and methods of making such devices. In an embodiment, the semiconductor device comprises a plurality of stacked semiconductor channels comprising first semiconductor channels and second semiconductor channels over the first semiconductor channels. In an embodiment a spacing is between the first semiconductor channels and the second semiconductor channels. The semiconductor device further comprises a gate dielectric surrounding individual ones of the semiconductor channels of the plurality of stacked semiconductor channels. In an embodiment, a first workfunction metal surrounds the first semiconductor channels, and a second workfunction metal surrounds the second semiconductor channels.Type: GrantFiled: June 25, 2020Date of Patent: July 23, 2024Assignee: Intel CorporationInventors: Nicole Thomas, Michael K. Harper, Leonard P. Guler, Marko Radosavljevic, Thoe Michaelos
-
Publication number: 20240006499Abstract: An integrated circuit includes an upper semiconductor body extending in a first direction from an upper source region to an upper drain region, and a lower semiconductor body extending in the first direction from a lower source region to a lower drain region. The upper body is spaced vertically from the lower body in a second direction orthogonal to the first direction. A gate spacer structure is adjacent to the upper and lower source regions. In an example, the gate spacer structure includes (i) a first section having a first dimension in the first direction, and (ii) a second section having a second dimension in the first direction. In an example, the first dimension is different from the second dimension by at least 1 nm. In some cases, an intermediate portion of the gate spacer structure extends laterally within a given gate structure, or between upper and lower gate structures.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Applicant: Intel CorporationInventors: Cheng-Ying Huang, Kai Loon Cheong, Pooja Nath, Susmita Ghose, Rambert Nahm, Natalie Briggs, Charles C. Kuo, Nicole K. Thomas, Munzarin F. Qayyum, Marko Radosavljevic, Jack T. Kavalieros, Thoe Michaelos, David Kohen
-
Publication number: 20230197728Abstract: An integrated circuit includes a lower and upper device portions including bodies of semiconductor material extending horizontally between first source and drain regions in a spaced-apart vertical stack. A first gate structure is around a body in the lower device portion and includes a first gate electrode and a first gate dielectric. A second gate structure is around a body in the upper device portion and includes a second gate electrode and a second gate dielectric, where the first gate dielectric is compositionally distinct from the second gate dielectric. In some embodiments, a dipole species has a first concentration in the first gate dielectric and a different second concentration in the second gate dielectric. A method of fabrication is also disclosed.Type: ApplicationFiled: December 17, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Nicole K. Thomas, Eric Mattson, Sudarat Lee, Sarah Atanasov, Christopher J. Jezewski, Charles Mokhtarzadeh, Thoe Michaelos, I-Cheng Tung, Charles C. Kuo, Scott B. Clendenning, Matthew V. Metz
-
Publication number: 20230090106Abstract: Gallium nitride (GaN) layer transfer for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon. A first layer including gallium and nitrogen is over a first region of the substrate, the first layer having a gallium-polar orientation with a top crystal plane consisting of a gallium face. A second layer including gallium and nitrogen is over a second region of the substrate, the second layer having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.Type: ApplicationFiled: September 21, 2021Publication date: March 23, 2023Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Paul B. FISCHER, Walid M. HAFEZ, Nicole K. THOMAS, Nityan NAIR, Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Thoe MICHAELOS
-
Publication number: 20220199620Abstract: Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.Type: ApplicationFiled: December 18, 2020Publication date: June 23, 2022Applicant: Intel CorporationInventors: Nicole Thomas, Eric Mattson, Sudarat Lee, Scott B. Clendenning, Tobias Brown-Heft, I-Cheng Tung, Thoe Michaelos, Gilbert Dewey, Charles Kuo, Matthew Metz, Marko Radosavljevic, Charles Mokhtarzadeh
-
Publication number: 20220189913Abstract: Disclosed herein are transistors, memory cells, and arrangements thereof. For example, in some embodiments, an integrated circuit (IC) structure may include a plurality of transistors, wherein the transistors are distributed in a hexagonally packed arrangement. In another example, in some embodiments, an IC structure may include a memory cell including an axially symmetric transistor coupled to an axially symmetric capacitor, wherein the axis of the transistor is aligned with the axis of the capacitor.Type: ApplicationFiled: December 10, 2020Publication date: June 16, 2022Applicant: Intel CorporationInventors: Sarah Atanasov, Abhishek A. Sharma, Bernhard Sell, Chieh-Jen Ku, Elliot Tan, Hui Jae Yoo, Noriyuki Sato, Travis W. Lajoie, Van H. Le, Thoe Michaelos
-
Publication number: 20210408257Abstract: Embodiments disclosed herein include semiconductor devices and methods of making such devices. In an embodiment, the semiconductor device comprises a plurality of stacked semiconductor channels comprising first semiconductor channels and second semiconductor channels over the first semiconductor channels. In an embodiment a spacing is between the first semiconductor channels and the second semiconductor channels. The semiconductor device further comprises a gate dielectric surrounding individual ones of the semiconductor channels of the plurality of stacked semiconductor channels. In an embodiment, a first workfunction metal surrounds the first semiconductor channels, and a second workfunction metal surrounds the second semiconductor channels.Type: ApplicationFiled: June 25, 2020Publication date: December 30, 2021Inventors: Nicole THOMAS, Michael K. HARPER, Leonard P. GULER, Marko RADOSAVLJEVIC, Thoe MICHAELOS