Patents by Inventor Thomas A. Curtis

Thomas A. Curtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050050126
    Abstract: Digital signal-processing structure and methodology which feature a time-slice-based digital fabricating engine, and software operating structure operatively associated with that engine structured to operate the engine in a time-slice-based fabrication mode wherein the engine, in a time-differentiated and instantiating manner, functions to fabricate a time-succession of individual, composite wave digital filters. Each of these filters takes the form of (1) a concatenated assembly including one to a plurality of upstream, early-stage, decimate-by-two, signal-processing agencies connected in a cascade series arrangement, with each such agency possessing a first transfer function having a first transition bandwidth, and (2) a single, downstream, later-stage, decimate-by-two, signal-processing agency which possesses a second transfer function having a transition bandwidth which is less than the mentioned first transition bandwidth.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 3, 2005
    Inventors: Thomas Curtis, Steven Sidman
  • Patent number: 5568917
    Abstract: A calipering assembly (40) is provided for use along a collating conveyor (14) having collated assemblages (20) thereon. The calipering assembly comprises a movable member (60) in the form of a wheel having an outer circumferential surface which engages a collated assemblage when the member is moved toward a collated assemblage. The outer circumferential surface of the member includes a light reflective surface portion (83) against which light (37) is directed and then reflected (38). A light sensor (39) senses the reflected light from the light reflective surface portion of the outer circumferential surface of the member. A processor (44) cooperates with the light sensor to provide a signal (42) which varies as a function of the thickness of the collated assemblage.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: October 29, 1996
    Assignee: AM International, Inc.
    Inventors: Michael C. Buschhaus, Richard D. Wamsley, Thomas Curtis
  • Patent number: 5549557
    Abstract: The present invention relates to angioplasty catheters and more particularly, to a proximal balloon bond on an extended shaft comprising an irradiated biocompatable thermoplastic jacket having a necked down distal end with the proximal end of a balloon heat bonded to the distal end of the jacket. In an alternative embodiment the catheter has an irradiated biocompatable thermoplastic jacket having a necked down distal end with the proximal end of a balloon heat bonded to the distal end of the jacket and a core wire extending throughout the jacket and throughout the balloon. In yet another alternative embodiment, the catheter has an irradiated biocompatable thermoplastic jacket having a necked down distal end with the proximal end of a balloon heat bonded to the distal end of the jacket as well as a sleeve defining a guidewire lumen, the sleeve extending longitudinally and exterior to the jacket and balloon.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: August 27, 1996
    Assignee: Medtronic, Inc.
    Inventors: Thomas A. Steinke, Joseph Gulachenski, R. Thomas Curtis, III
  • Patent number: 5185469
    Abstract: A continuous process is disclosed for the acylation or alkylation of aromatic compounds in hydrogen fluoride. The aromatic compound is sufficiently insoluble in hydrogen fluoride that a two phase reaction medium forms. However, surprisingly, the product acylated or alkylated aromatic compound is soluble in hydrogen fluoride. The present invention particularly relates to use of a continuous, multi-stage process for carrying out the acylation or alkylation reaction. In the multi-stage process, the continuous phase can be either the hydrogen-fluoride rich phase or the aromatic compound-rich phase. The movement of the continuous phase relative to the non-continuous (dispersed) phase can be countercurrent or concurrent. The multi-stage process can be operated in a manner such that the aromatic compound feed to the reaction is entirely consumed or such that unreacted aromatic compound is recycled.
    Type: Grant
    Filed: August 23, 1991
    Date of Patent: February 9, 1993
    Assignee: Hoechst Celanese Corp.
    Inventors: Daniel D. Lindley, Timothy R. Ryan, Thomas A. Curtis, Edward M. De la Garza, Charles R. Hilton, Thomas M. Kenesson
  • Patent number: 5068448
    Abstract: A continuous process is provided for the production of 4'-isobutylacetophenone (4-IBAP) comprising feeding liquid hydrogen fluoride (HF) and an acetylating agent into an extractor-reactor to form a first, HF-rich phase containing the acetylating agent, feeding isobutylbenzene (IBB) to the extractor-reactor to form a second, IBB-rich phase which is contacted with said first, HF-rich phase in a manner such that the acetylating agent reacts with IBB to form 4-IBAP which is extracted into the first, HF-rich phase, and a light IBB-rich second phase containing the bulk of unreacted IBB, externally recycling said second, IBB-rich phase to the IBB feed point in combination with fresh IBB to make up for IBB consumed in the reaction and that and dissolved in the HF-rich phase, and withdrawing HF-rich phase containing 4-IBAP from the extractor-reactor.
    Type: Grant
    Filed: October 5, 1990
    Date of Patent: November 26, 1991
    Assignee: Hoechst Celanese Corporation
    Inventors: Daniel D. Lindley, Thomas A. Curtis, Timothy R. Ryan, Edward M. de la Garza, Charles B. Hilton, Thomas M. Kenesson
  • Patent number: 4990681
    Abstract: A method is provided for separating hydrogen fluoride (HF) from a mixture comprising HF complexed with an aromatic ketone in which the keto carbon atom is directly bonded to an aromatic ring carbon atom, e.g., 4-isobutylacetophenone, by adding a carboxylic acid anhydride, e.g., acetic anhydride, to the mixture while maintaining the mixture at conditions sufficient to sustain a reaction between the anhydride and the HF to form the corresponding acyl fluoride, e.g., acetyl fluoride, and carboxylic acid, e.g., acetic acid, and separating the acyl fluoride from the mixture. The method is conveniently carried out in a stripping column near the top of which the mixture comprising aromatic ketone and HF is fed and below which the anhydride is fed. Between these feed points, the uncomplexed HF is stripped from the mixture, while below the anhydride feed point or points, the anhydride reacts with the complexed HF to form the acyl fluoride which is stripped from the mixture, and the carboxylic acid.
    Type: Grant
    Filed: December 4, 1989
    Date of Patent: February 5, 1991
    Inventors: Thomas A. Curtis, Timothy R. Ryan, Daniel D. Lindley