Patents by Inventor Thomas A. Kodenkandath

Thomas A. Kodenkandath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11664498
    Abstract: The present invention relates to lithium rechargeable battery cathode materials. More specifically, the cathode materials are compositionally gradient nickel-rich cathode materials produced using single-source composite precursor materials containing inorganic and/or metalorganic salts of lithium, nickel, manganese, and cobalt. Methods and systems for manufacturing the cathode materials by a combined spray pyrolysis/fluidized bed process are also disclosed.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 30, 2023
    Assignee: Hazen Research Inc.
    Inventors: Thomas A. Kodenkandath, Steve D. Will
  • Publication number: 20200365890
    Abstract: The present invention relates to lithium rechargeable battery cathode materials. More specifically, the cathode materials are compositionally gradient nickel-rich cathode materials produced using single-source composite precursor materials containing inorganic and/or metalorganic salts of lithium, nickel, manganese, and cobalt. Methods and systems for manufacturing the cathode materials by a combined spray pyrolysis/fluidized bed process are also disclosed.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Inventors: Thomas A. Kodenkandath, Steve D. Will
  • Patent number: 8354136
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Publication number: 20120060900
    Abstract: A process described herein provides an economical means for producing the oxide-based buffer layers using a wet chemical CSD process wherein the desired buffer layer material results from the evaporation of a chemical already containing the material in solution. Thus, no residual liquid chemical elements remain after deposition, and as there is no reaction to create the buffer material, as is the case with CdS CBD, the liquid elements in CSD have sufficiently long shelf life after mixing to as to improve manufacturability and further reduce waste. Furthermore, as there is no in-chamber reaction to create the buffer material solution, there are many options for delivering said solution to the CIGS absorber layer. Finally, as the oxide films for the CdS replacement have inherently better transmission in the blue spectrum, aggressive thinning of films to improve current generation is unnecessary.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: Ascent Solar Technologies, Inc.
    Inventors: Thomas A. Kodenkandath, Anne Gatchell, Venugopala R. Basava
  • Patent number: 7939126
    Abstract: Superconductor precursor solutions are disclosed. The precursor solutions contain, for example, a salt of a rare earth metal, a salt of an alkaline earth metal and a salt of a transition metal. The precursor solutions can optionally include a Lewis base. The precursor solutions can be processed relatively quickly to provide a relatively thick and good quality intermediate of a rare earth metal-alkaline earth metal-transition metal oxide.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: May 10, 2011
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, Thomas A. Kodenkandath
  • Patent number: 7893006
    Abstract: Under one aspect, a method of making a superconductor wire includes providing an oxide superconductor layer overlaying a substrate; forming a substantially continuous barrier layer over the oxide superconductor layer, the barrier layer including metal; depositing a layer of metal particles over the barrier layer, said depositing including applying a liquid including metal particles over the barrier layer; and sintering the layer of metal particles to form a substantially continuous metal layer over the barrier layer. In one or more embodiments, the oxide superconductor layer is oxygen-deficient, and the method may include oxidizing the oxygen-deficient oxide superconductor layer. At least a portion of the sintering and the oxidizing may occur simultaneously, for example by performing them at an oxygen partial pressure and a temperature sufficient to both sinter the metal particles and to oxidize the oxygen-deficient oxide superconductor layer.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Thomas Kodenkandath, Joseph Lynch, Martin W. Rupich, Wei Zhang
  • Publication number: 20100216646
    Abstract: A process for preparing a superconductor article includes depositing a precursor solution onto a substrate to form a precursor film, the precursor solution comprising precursor components to a rare earth-alkaline earth metal-transition metal oxide in one or more solvents, decomposing the precursor film to form an intermediate film comprising the rare earth metal, the alkaline earth metal, and the transition metal of the first precursor solution, selectively removing portions of the intermediate film, wherein a patterned intermediate film is obtained, and treating the patterned intermediate film to form a rare earth-alkaline earth metal-transition metal oxide superconductor.
    Type: Application
    Filed: February 26, 2010
    Publication date: August 26, 2010
    Applicant: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang
  • Patent number: 7781376
    Abstract: A superconducting wire includes first and second superconducting layers disposed on one or more substrates in stacked relationship, the first superconducting layer comprising a high temperature superconducting oxide of a first composition and the second superconducting layer comprising a high temperature superconducting layer of a second composition, wherein the first and second compositions are different. The first superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic(c)) in the presence of magnetic fields perpendicular to surface of the superconducting layer (H//c). The second superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic) in the presence of magnetic fields parallel to surface of the superconducting layer (H//ab).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 24, 2010
    Assignee: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang, Yibing Huang, Xiaoping Li, Edward J. Siegal, Martin W. Rupich
  • Publication number: 20100112192
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 6, 2010
    Applicant: American Superconductor Corp.
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Publication number: 20100048406
    Abstract: A method for producing a thin film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt.
    Type: Application
    Filed: December 30, 2008
    Publication date: February 25, 2010
    Applicant: AMERICAN SUPERCONDUCTOR CORPORATION
    Inventors: Martin W. RUPICH, Thomas KODENKANDATH, Wei ZHANG, Xiaoping LI
  • Patent number: 7622424
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Publication number: 20090233800
    Abstract: Under one aspect, a method of making a superconductor wire includes providing an oxide superconductor layer overlaying a substrate; forming a substantially continuous barrier layer over the oxide superconductor layer, the barrier layer including metal; depositing a layer of metal particles over the barrier layer, said depositing including applying a liquid including metal particles over the barrier layer; and sintering the layer of metal particles to form a substantially continuous metal layer over the barrier layer. In one or more embodiments, the oxide superconductor layer is oxygen-deficient, and the method may include oxidizing the oxygen-deficient oxide superconductor layer. At least a portion of the sintering and the oxidizing may occur simultaneously, for example by performing them at an oxygen partial pressure and a temperature sufficient to both sinter the metal particles and to oxidize the oxygen-deficient oxide superconductor layer.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 17, 2009
    Applicant: American Superconductor Corporation
    Inventors: Yibing Huang, Thomas Kodenkandath, Joseph Lynch, Martin W. Rupich, Wei Zhang
  • Publication number: 20080188373
    Abstract: Superconductor precursor solutions are disclosed. The precursor solutions contain, for example, a salt of a rare earth metal, a salt of an alkaline earth metal and a salt of a transition metal. The precursor solutions can optionally include a Lewis base. The precursor solutions can be processed relatively quickly to provide a relatively thick and good quality intermediate of a rare earth metal-alkaline earth metal-transition metal oxide.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 7, 2008
    Applicant: American Superconductor Corporation
    Inventors: Martin W. Rupich, Thomas A. Kodenkandath
  • Patent number: 7326434
    Abstract: Superconductor precursor solutions are disclosed. The precursor solutions contain, for example, a salt of a rare earth metal, a salt of an alkaline earth metal and a salt of a transition metal. The precursor solutions can optionally include a Lewis base. The precursor solutions can be processed relatively quickly to provide a relatively thick and good quality intermediate of a rare earth metal-alkaline earth metal-transition metal oxide.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: February 5, 2008
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, Thomas A. Kodenkandath
  • Patent number: 7261776
    Abstract: A method of making a multilayer article includes depositing a first material on the surface of a metal substrate to form a seed layer of the first material, the first material being deposited under reducing conditions relative to the metal substrate, and then epitaxially depositing a second material on a surface of the seed layer, wherein the second material is deposited from a solution-based precursor under second conditions that are more oxidizing than the reducing conditions used in the deposition of the first material.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: August 28, 2007
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, Urs-Detlev Schoop, Darren Verebelyi, Thomas Kodenkandath, Xiaoping Li
  • Publication number: 20070197395
    Abstract: A process for preparing a superconductor article includes depositing a precursor solution onto a substrate to form a precursor film, the precursor solution comprising precursor components to a rare earth-alkaline earth metal-transition metal oxide in one or more solvents, decomposing the precursor film to form an intermediate film comprising the rare earth metal, the alkaline earth metal, and the transition metal of the first precursor solution, selectively removing portions of the intermediate film, wherein a patterned intermediate film is obtained, and treating the patterned intermediate film to form a rare earth-alkaline earth metal-transition metal oxide superconductor.
    Type: Application
    Filed: January 10, 2007
    Publication date: August 23, 2007
    Applicant: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang
  • Publication number: 20070111893
    Abstract: A superconducting wire includes first and second superconducting layers disposed on one or more substrates in stacked relationship, the first superconducting layer comprising a high temperature superconducting oxide of a first composition and the second superconducting layer comprising a high temperature superconducting layer of a second composition, wherein the first and second compositions are different. The first superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic(c)) in the presence of magnetic fields perpendicular to surface of the superconducting layer (H//c). The second superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic) in the presence of magnetic fields parallel to surface of the superconducting layer (H//ab).
    Type: Application
    Filed: July 28, 2006
    Publication date: May 17, 2007
    Applicant: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang, Yibing Huang, Xiaoping Li, Edward Siegal, Martin Rupich
  • Publication number: 20060094603
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Application
    Filed: September 30, 2005
    Publication date: May 4, 2006
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward Siegal, Wei Zhang, Martin Rupich, Yibing Huang
  • Publication number: 20060051600
    Abstract: Superconductor precursor solutions are disclosed. The precursor solutions contain, for example, a salt of a rare earth metal, a salt of an alkaline earth metal and a salt of a transition metal. The precursor solutions can optionally include a Lewis base. The precursor solutions can be processed relatively quickly to provide a relatively thick and good quality intermediate of a rare earth metal-alkaline earth metal-transition metal oxide.
    Type: Application
    Filed: November 18, 2004
    Publication date: March 9, 2006
    Inventors: Martin Rupich, Thomas Kodenkandath
  • Publication number: 20050217568
    Abstract: A method of making a multilayer article includes depositing a first material on the surface of a metal substrate to form a seed layer of the first material, the first material being deposited under reducing conditions relative to the metal substrate, and then epitaxially depositing a second material on a surface of the seed layer, wherein the second material is deposited from a solution-based precursor under second conditions that are more oxidizing than the reducing conditions used in the deposition of the first material.
    Type: Application
    Filed: March 30, 2004
    Publication date: October 6, 2005
    Applicant: American Superconductor Corporation
    Inventors: Martin Rupich, Urs-Detlev Schoop, Darren Verebelyi, Thomas Kodenkandath, Xiaoping Li