Patents by Inventor Thomas A. Ohki

Thomas A. Ohki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11451204
    Abstract: An amplifier. In some embodiments, the amplifier includes a resonant circuit having a resonant frequency, a pump input, a signal input, and a signal output. The resonant circuit may include a Josephson junction connected to the pump input, the Josephson junction being a superconducting-normal-superconducting junction having two superconducting terminals and being configured to adjust the resonant frequency of the resonant circuit based on a signal received at the pump input.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: September 20, 2022
    Assignee: Raytheon BBN Technologies Corp
    Inventors: Kin Chung Fong, Guilhem Ribeill, Luke Colin Gene Govia, Martin Gustafsson, Thomas A. Ohki
  • Patent number: 10784433
    Abstract: A transistor. In some embodiments, the transistor includes a first superconducting source-drain, a second superconducting source-drain, a graphene channel including at least a portion of a graphene sheet, and a conductive gate. The first superconducting source-drain, the second superconducting source-drain, and the graphene channel together form a Josephson junction having a critical current. The graphene channel forms a current path between the first superconducting source-drain and the second superconducting source-drain. The conductive gate is configured, upon application of a electric field across the conductive gate and the graphene channel by applying a voltage, to modify the critical current.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: September 22, 2020
    Assignee: Raytheon BBN Technologies Corp
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20200274507
    Abstract: An amplifier. In some embodiments, the amplifier includes a resonant circuit having a resonant frequency, a pump input, a signal input, and a signal output. The resonant circuit may include a Josephson junction connected to the pump input, the Josephson junction being a superconducting-normal-superconducting junction having two superconducting terminals and being configured to adjust the resonant frequency of the resonant circuit based on a signal received at the pump input.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 27, 2020
    Inventors: Kin Chung Fong, Guilhem Ribeill, Luke Colin Gene Govia, Martin Gustafsson, Thomas A. Ohki
  • Patent number: 10454016
    Abstract: A photon detector including a graphene-insulating-superconducting junction configured as a temperature sensor. Photons are absorbed by the graphene sheet of the graphene-insulating-superconducting junction, each absorbed photon causing a temporary increase in the temperature of the graphene sheet, and a corresponding change in the differential impedance of the graphene-insulating-superconducting junction. The graphene-insulating-superconducting junction is part of a resonant circuit connected as a shunt load between a radio frequency input transmission line and a radio frequency output transmission line. The transmission S-parameter from input to output is affected by the impedance of the resonant circuit which in turn is affected by the differential impedance of the graphene-insulating-superconducting junction, and therefore by the temperature of the graphene sheet.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: October 22, 2019
    Assignee: Raytheon BBN Technologies Corp.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20190288177
    Abstract: A transistor. In some embodiments, the transistor includes a first superconducting source-drain, a second superconducting source-drain, a graphene channel including at least a portion of a graphene sheet, and a conductive gate. The first superconducting source-drain, the second superconducting source-drain, and the graphene channel together form a Josephson junction having a critical current. The graphene channel forms a current path between the first superconducting source-drain and the second superconducting source-drain. The conductive gate is configured, upon application of a electric field across the conductive gate and the graphene channel by applying a voltage, to modify the critical current.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 19, 2019
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20180337324
    Abstract: A photon detector including a graphene-insulating-superconducting junction configured as a temperature sensor. Photons are absorbed by the graphene sheet of the graphene-insulating-superconducting junction, each absorbed photon causing a temporary increase in the temperature of the graphene sheet, and a corresponding change in the differential impedance of the graphene-insulating-superconducting junction. The graphene-insulating-superconducting junction is part of a resonant circuit connected as a shunt load between a radio frequency input transmission line and a radio frequency output transmission line. The transmission S-parameter from input to output is affected by the impedance of the resonant circuit which in turn is affected by the differential impedance of the graphene-insulating-superconducting junction, and therefore by the temperature of the graphene sheet.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 22, 2018
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9799817
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 24, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9761782
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: September 12, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9666743
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In some embodiments the waveguide is omitted and infrared light propagating in free space illuminates the graphene sheet directly. A photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 30, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20170092834
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 30, 2017
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9577176
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: February 21, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9548436
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: January 17, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20160372622
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In some embodiments the waveguide is omitted and infrared light propagating in free space illuminates the graphene sheet directly. A photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Application
    Filed: August 19, 2016
    Publication date: December 22, 2016
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9502630
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: November 22, 2016
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki