Patents by Inventor Thomas A. Peyser

Thomas A. Peyser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060189863
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: November 1, 2005
    Publication date: August 24, 2006
    Applicant: Abbott Diabetes Care, Inc.
    Inventors: Thomas Peyser, Adam Heller
  • Publication number: 20060004271
    Abstract: Described are devices, methods, and kits for non-invasively measuring glucose. In general, the devices comprise skin patches for placement on a skin surface and measurement devices for measuring glucose collected in the patches. The patches may include an adhesive material, a collection layer, an interface layer, and a sweat-permeable membrane. The sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion. In this way, non-correlatable skin surface glucose will not be measured. The patches may further include components to induce a local sweat response. The measurement device typically includes a display, a processor, and a measurement mechanism. The methods typically include the steps of wiping the skin surface with a wipe containing at least one solvent for removing glucose, placing a patch on a skin surface, and measuring glucose collected in the patch. Kits comprising the patch and measurement device are also described.
    Type: Application
    Filed: June 22, 2005
    Publication date: January 5, 2006
    Inventors: Thomas Peyser, Russell Potts, Herbert Berman, James Moyer, Mikhail Kouchnir
  • Publication number: 20050137469
    Abstract: A single detector infrared ATR glucose measurement system is disclosed herein. The device uses attenuated total reflection infrared spectroscopy. Preferably, the device is used on a fingertip and compares two specific regions of a measured infrared spectrum to determine the blood glucose level of the user. A single IR detector is utilized along with an alternating filter. This device is especially suitable for monitoring glucose levels in the human body, and is especially beneficial to users having diabetes mellitus. The device and procedure may be used for other analyte materials which exhibit unique mid-IR signatures of the type described herein and that are found in appropriate regions of the outer skin.
    Type: Application
    Filed: December 17, 2003
    Publication date: June 23, 2005
    Inventors: Herbert Berman, Thomas Peyser
  • Patent number: 6766183
    Abstract: Fluorescent biosensor molecules, fluorescent biosensors and systems, as well as methods of making and using these biosensor molecules and systems are described. Embodiments of these biosensor molecules exhibit fluorescence emission at wavelengths greater than about 650 nm. Typical biosensor molecules include a fluorophore that includes an iminium ion, a linker moiety that includes a group that is an anilinic type of relationship to the fluorophore and a boronate substrate recognition/binding moiety, which binds glucose. The fluorescence molecules modulated by the presence or absence of polyhydroxylated analytes such as glucose. This property of these molecules of the invention, as well as their ability to emit fluorescent light at greater than about 650 nm, renders these biosensor molecules particularly well-suited for detecting and measuring in-vivo glucose concentrations.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 20, 2004
    Assignees: Medtronic MiniMed, Inc., The Regents of the University of California
    Inventors: Joseph C. Walsh, Aaron M. Heiss, Glenn Noronha, David J. Vachon, Stephen M. Lane, Joe H. Satcher, Jr., Thomas A. Peyser, William Peter Van Antwerp, John Joseph Mastrototaro
  • Patent number: 6750311
    Abstract: Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: June 15, 2004
    Assignees: MiniMed Inc., The Regents of the University of California
    Inventors: William Peter Van Antwerp, John Joseph Mastrototaro, Stephen M. Lane, Joe H. Satcher, Jr., Christopher B. Darrow, Thomas A. Peyser, Jennifer Harder
  • Publication number: 20020193672
    Abstract: Fluorescent biosensor molecules, fluorescent biosensors and systems, as well as methods of making and using these biosensor molecules and systems are described. Embodiments of these biosensor molecules exhibit fluorescence emission at wavelengths greater than about 650 nm. Typical biosensor molecules include a fluorophore that includes an iminium ion, a linker moiety that includes a group that is an anilinic type of relationship to the fluorophore and a boronate substrate recognition/binding moiety, which binds glucose. The fluorescence molecules modulated by the presence or absence of polyhydroxylated analytes such as glucose. This property of these molecules of the invention, as well as their ability to emit fluorescent light at greater than about 650 nm, renders these biosensor molecules particularly well-suited for detecting and measuring in-vivo glucose concentrations.
    Type: Application
    Filed: December 28, 2001
    Publication date: December 19, 2002
    Inventors: Joseph C. Walsh, Aaron M. Heiss, Glenn Noronha, David J. Vachon, Stephen M. Lane, Joe H. Satcher, Thomas A. Peyser, William Peter Van Antwerp, John Joseph Mastrototaro
  • Patent number: 6002954
    Abstract: Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: December 14, 1999
    Assignees: The Regents of the University of California, Minimed Inc.
    Inventors: William Peter Van Antwerp, John Joseph Mastrototaro, Stephen M. Lane, Joe H. Satcher, Jr., Christopher B. Darrow, Thomas A. Peyser, Jennifer Harder