Patents by Inventor Thomas A. Silvestrini

Thomas A. Silvestrini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210259827
    Abstract: A two-part accommodating intraocular lens (IOL) device for implantation in a capsular bag of a patient's eye. The IOL device includes a primary lens assembly and a power changing lens. The primary lens assembly includes a fixed lens and a peripherally disposed centration member. The centration member has a circumferential distal edge and a first coupling surface adjacent the circumferential distal edge. The power changing lens has an enclosed, fluid- or gel-filled lens cavity and haptic system disposed peripherally of the lens cavity. The haptic system has a peripheral engaging edge configured to contact the capsular bag and a second coupling surface. The first and second coupling surfaces are in sliding contact with one another to permit movement of the power changing lens relative to the primary lens assembly and also to maintain a spaced relationship between the fixed lens and the lens cavity during radial compression of the power changing lens.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Publication number: 20210244532
    Abstract: Implantable corneal and intraocular implants such as a mask are provided. The mask can improve the vision of a patient, such as by being configured to increase the depth of focus of an eye of a patient. The mask can include an aperture configured to transmit along an optical axis substantially all visible incident light. The mask can further include a transition portion that surrounds at least a portion of the aperture. This portion can be configured to switch from one level of opacity to another level of opacity through the use of a controllably variable absorbance feature such as a switchable photochromic chromophore within a polymer matrix.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 12, 2021
    Inventor: Thomas A. Silvestrini
  • Patent number: 11065107
    Abstract: An accommodating intraocular lens device is provided. The accommodating intraocular lens device comprises a base assembly and a power lens. The base assembly comprises a first open end, a second end coupled to a base lens, and a haptic surrounding a central cavity. The haptic may comprise an outer periphery, an inner surface and a height between a first edge and a second edge. The power lens is configured to fit within the central cavity. The power lens may comprise a first side, a second side, a peripheral edge coupling the first and second sides, and a closed cavity configured to house a fluid. The first side of the power lens may be positioned at a predetermined distance from the first edge of the haptic.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: July 20, 2021
    Assignee: LensGen, Inc.
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Publication number: 20210205134
    Abstract: A method for adjusting the refractive power of a fluid-filled intraocular lens implanted into a patients eye. The method comprises selecting a pattern to cause a flattening of the intraocular lens or an increase in curvature of the intraocular lens, and ablating the pattern, onto either an optical element of the intraocular lens or a flexible element of the intraocular lens, to alter either one or both of a refractive power and an amplitude of accommodation of the intraocular lens. The ablating occurs while the intraocular lens remains implanted in the patient's eye. The ablating maintains the integrity of a fluid-filled interior cavity defined between the optical element and the flexible element, but causes the flattening of the intraocular lens or the increase in curvature of the intraocular lens.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 8, 2021
    Inventors: Ramgopal Rao, Thomas Silvestrini
  • Publication number: 20210154002
    Abstract: A mask configured to be implanted in a cornea of a patient to increase the depth of focus of the patient includes an anterior surface, a posterior surface, and a plurality of holes. The anterior surface is configured to reside adjacent a first corneal layer. The posterior surface is configured to reside adjacent a second corneal layer. The plurality of holes extends at least partially between the anterior surface and the posterior surface. The holes of the plurality of holes are configured to substantially eliminate visible diffraction patterns.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 27, 2021
    Inventors: Bruce A. Christie, Thomas A. Silvestrini, Kevin F. Hahnen
  • Patent number: 11000364
    Abstract: A two-part accommodating intraocular lens (IOL) device for implantation in a capsular bag of a patient's eye. The IOL device includes a primary lens assembly and a power changing lens. The primary lens assembly includes a fixed lens and a peripherally disposed centration member. The centration member has a circumferential distal edge and a first coupling surface adjacent the circumferential distal edge. The power changing lens has an enclosed, fluid- or gel-filled lens cavity and haptic system disposed peripherally of the lens cavity. The haptic system has a peripheral engaging edge configured to contact the capsular bag and a second coupling surface. The first and second coupling surfaces are in sliding contact with one another to permit movement of the power changing lens relative to the primary lens assembly and also to maintain a spaced relationship between the fixed lens and the lens cavity during radial compression of the power changing lens.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 11, 2021
    Assignee: LensGen, Inc.
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Patent number: 10939995
    Abstract: Implantable corneal and intraocular implants such as a mask are provided. The mask can improve the vision of a patient, such as by being configured to increase the depth of focus of an eye of a patient. The mask can include an aperture configured to transmit along an optical axis substantially all visible incident light. The mask can further include a transition portion that surrounds at least a portion of the aperture. This portion can be configured to switch from one level of opacity to another level of opacity through the use of a controllably variable absorbance feature such as a switchable photochromic chromophore within a polymer matrix.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 9, 2021
    Assignee: AcuFocus, Inc.
    Inventor: Thomas A. Silvestrini
  • Patent number: 10869752
    Abstract: A mask configured to be implanted in a cornea of a patient to increase the depth of focus of the patient includes an anterior surface, a posterior surface, and a plurality of holes. The anterior surface is configured to reside adjacent a first corneal layer. The posterior surface is configured to reside adjacent a second corneal layer. The plurality of holes extends at least partially between the anterior surface and the posterior surface. The holes of the plurality of holes are configured to substantially eliminate visible diffraction patterns.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 22, 2020
    Assignee: AcuFocus, Inc.
    Inventors: Bruce A. Christie, Thomas A. Silvestrini, Kevin F. Hahnen
  • Publication number: 20200369853
    Abstract: The disclosure relates generally to a polymeric material for use in accommodating intraocular lenses for implantation in a lens chamber of a subject's eye. The present disclosure is directed to a polymeric material which comprises a fluorosilicone polymer and a silica component. The presently disclosed polymeric material is both optically clear and has a sufficiently low Young's modulus such that it can effectively respond to the eye's natural accommodative forces and thus can be used in accommodating intraocular lenses. When used in the fabrication of an intraocular lenses, the polymeric material disclosed herein protect the physical characteristics of the lens as the added hydrophobicity of the fluorosilicone polymer allows it to effectively resist diffusion of fluid from the eye and the adhesion of biologica materials.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 26, 2020
    Inventors: Thomas Silvestrini, Kevin Yacoub
  • Patent number: 10842616
    Abstract: An intraocular lens (IOL) device comprising a first lens, a second lens and a circumferential haptic. The first lens comprises a pair of opposing and deformable surfaces and a cavity defined therebetween. The first lens has a first lens diameter. The second lens has a second lens diameter. The circumferential haptic has an outer peripheral edge and couples the first lens and the second lens. A main IOL cavity is defined by the circumferential haptic, the first lens and the second lens. The IOL device is resiliently biased to an unaccommodated state, characterized by the IOL device having a first diameter d1 in the absence of radial compressive forces exerted on the outer peripheral edge. The IOL device actuates to an accommodated state being characterized by a second diameter d2 in response to radial compressive forces exerted on the outer peripheral edge, wherein d1>d2.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: November 24, 2020
    Assignee: LensGen, Inc.
    Inventors: Thomas Silvestrini, Daniel Brady, Ramgopal Rao
  • Publication number: 20200179104
    Abstract: An accommodating intraocular lens (IOL) can be implanted either alone or as part of a two-part lens assembly. The IOL comprises an optic, a flexible membrane and a peripheral edge coupling the optic and the flexible membrane. The peripheral edge comprises an external circumferential surface having a height and a force transmitting area defined along a portion of the height of the external circumferential surface. A closed volume spaces apart the optic and the flexible membrane. The optic is axially displaced and the flexible membrane changes in curvature about a central axis when a radial compressive force is applied to the force transmitting area. A volume defined by the closed volume remains fixed when the optic is axially displaced and the flexible membrane changes in curvature and/or when the radial compressive force is applied to the force transmitting area.
    Type: Application
    Filed: November 8, 2019
    Publication date: June 11, 2020
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Publication number: 20200179170
    Abstract: Described herein are devices and methods for treating eye conditions. Described is an ocular implant including an elongate member having an internal lumen forming a flow pathway, at least one inflow port communicating with the flow pathway, and at least one outflow port communicating with the flow pathway. The elongate member is adapted to be positioned in the eye such that at least one inflow port communicates with the anterior chamber, at least one outflow port communicates with the suprachoroidal space to provide a fluid pathway between the anterior chamber and the suprachoroidal space when the elongate member is implanted in the eye. The elongate member has a wall material imparting a stiffness to the elongate member. The stiffness is selected such that after implantation the elongate member deforms eye tissue surrounding the suprachoroidal space forming a tented volume.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Applicant: Novartis AG
    Inventors: Thomas A. Silvestrini, Eugene de Juan, JR.
  • Publication number: 20200157124
    Abstract: A silicone oil having a mean molecular weight average greater than about 20,000 Daltons, with no more than about 3% to about 4% of the total silicone oil by weight being comprised of components having a molecular weight less than about 15,000 Daltons. In some embodiments, the silicone oil is used in intraocular lens devices.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 21, 2020
    Inventor: Thomas Silvestrini
  • Patent number: 10647831
    Abstract: The disclosure relates generally to a polymeric material for use in accommodating intraocular lenses for implantation in a lens chamber of a subject's eye. The present disclosure is directed to a polymeric material which comprises a fluorosilicone polymer and a silica component. The presently disclosed polymeric material is both optically clear and has a sufficiently low Young's modulus such that it can effectively respond to the eye's natural accommodative forces and thus can be used in accommodating intraocular lenses. When used in the fabrication of an intraocular lenses, the polymeric material disclosed herein protect the physical characteristics of the lens as the added hydrophobicity of the fluorosilicone polymer allows it to effectively resist diffusion of fluid from the eye and the adhesion of biologica materials.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: May 12, 2020
    Assignee: LensGens, Inc.
    Inventors: Thomas Silvestrini, Kevin Yacoub
  • Publication number: 20200085568
    Abstract: A two-part accommodating intraocular lens (IOL) device for implantation in a capsular bag of a patient's eye. The IOL device includes a primary lens assembly and a power changing lens. The primary lens assembly includes a fixed lens and a peripherally disposed centration member. The centration member has a circumferential distal edge and a first coupling surface adjacent the circumferential distal edge. The power changing lens has an enclosed, fluid- or gel-filled lens cavity and haptic system disposed peripherally of the lens cavity. The haptic system has a peripheral engaging edge configured to contact the capsular bag and a second coupling surface. The first and second coupling surfaces are in sliding contact with one another to permit movement of the power changing lens relative to the primary lens assembly and also to maintain a spaced relationship between the fixed lens and the lens cavity during radial compression of the power changing lens.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Patent number: 10531983
    Abstract: Described herein are devices and methods for treating eye conditions. Described is an ocular implant including an elongate member having an internal lumen forming a flow pathway, at least one inflow port communicating with the flow pathway, and at least one outflow port communicating with the flow pathway. The elongate member is adapted to be positioned in the eye such that at least one inflow port communicates with the anterior chamber, at least one outflow port communicates with the suprachoroidal space to provide a fluid pathway between the anterior chamber and the suprachoroidal space when the elongate member is implanted in the eye. The elongate member has a wall material imparting a stiffness to the elongate member. The stiffness is selected such that after implantation the elongate member deforms eye tissue surrounding the suprachoroidal space forming a tented volume.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: January 14, 2020
    Assignee: Novartis AG
    Inventors: Thomas A. Silvestrini, Eugene de Juan, Jr.
  • Publication number: 20200008932
    Abstract: Implantable corneal and intraocular implants such as a mask are provided. The mask can improve the vision of a patient, such as by being configured to increase the depth of focus of an eye of a patient. The mask can include an aperture configured to transmit along an optical axis substantially all visible incident light. The mask can further include a transition portion that surrounds at least a portion of the aperture. This portion can be configured to switch from one level of opacity to another level of opacity through the use of a controllably variable absorbance feature such as a switchable photochromic chromophore within a polymer matrix.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 9, 2020
    Inventor: Thomas A. Silvestrini
  • Patent number: 10526353
    Abstract: A silicone oil having a mean molecular weight average greater than about 20,000 Daltons, with no more than about 3% to about 4% of the total silicone oil by weight being comprised of components having a molecular weight less than about 15,000 Daltons. In some embodiments, the silicone oil is used in intraocular lens devices.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 7, 2020
    Assignee: LensGen, Inc.
    Inventor: Thomas Silvestrini
  • Publication number: 20190374334
    Abstract: An intraocular device that includes a base member is provided. The device can be an accommodation intraocular lens device with the base member and a power changing lens. The base member comprises an annular haptic that surrounds a central cavity having an open end. The power changing lens is configured to fit within the central cavity. The haptic comprises one or more projections, e.g., tabs that hold another device in position. In the case of the accommodating intraocular lens device, the other device is the power changing lens. The base member and the power changing lens are maintained separate until assembly in the eye of the patient. During assembly, the base member is advanced into the capsular bag of a patient through a capsulorhexis and oriented such that the open end of the central cavity faces the cornea. Subsequently, the power changing lens is advanced into the central cavity through the capsulorhexis.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao
  • Patent number: 10485654
    Abstract: An accommodating intraocular lens (IOL) can be implanted either alone or as part of a two-part lens assembly. The IOL comprises an optic, a flexible membrane and a peripheral edge coupling the optic and the flexible membrane. The peripheral edge comprises an external circumferential surface having a height and a force transmitting area defined along a portion of the height of the external circumferential surface. A closed volume spaces apart the optic and the flexible membrane. The optic is axially displaced and the flexible membrane changes in curvature about a central axis when a radial compressive force is applied to the force transmitting area. A volume defined by the closed volume remains fixed when the optic is axially displaced and the flexible membrane changes in curvature and/or when the radial compressive force is applied to the force transmitting area.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: November 26, 2019
    Assignee: LensGen, Inc.
    Inventors: Daniel Brady, Thomas Silvestrini, Ramgopal Rao