Patents by Inventor Thomas A. Yersak

Thomas A. Yersak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180309165
    Abstract: An electrochemical cell comprising an alkali metal anode and a solid electrolyte is disclosed. The surface of the electrolyte is roughened, mechanically, chemically or by ablation and the cell is operated at a pressure of between 3 MPa and 10 MPa. Such a cell exhibits higher power density than a like-dimensioned cell employing a smooth-surfaced electrolyte surface and operated at pressures of less than 1 MPa.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Thomas A. Yersak, James R. Salvador
  • Publication number: 20180294517
    Abstract: Thin amorphous or partially crystalline lithium-containing and conducting sulfide or oxysulfide glass electrode/separator members are prepared from a layer of molten glass or of glass powder. The resulting glass films are formed to lie face-to face against a lithium metal anode or a sodium metal anode and a cathode and to provide for good transport of lithium ions between the electrodes during repeated cycling of the cell and to prevent shorting of the cell by dendrites growing from the lithium metal or sodium metal anode.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventors: Thomas A. Yersak, James R. Salvador, Han Nguyen
  • Patent number: 10054267
    Abstract: An array of pressure vessels for storage of a compressed gas includes at least one Type 4 pressure vessel and at least one Type 1 pressure vessel. The Type 1 pressure vessel is in fluid communication with the at least one Type 4 pressure vessel. A metal wall of the at least one Type 1 pressure vessel has a Type 1 thermal conductance that is greater than a Type 4 thermal conductance of the at least one Type 4 pressure vessel.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 21, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas A. Yersak, Jerome P. Ortmann, Mahmoud H. Abd Elhamid
  • Publication number: 20180080609
    Abstract: A product may include a storage vessel that may define a first port opening into the storage vessel, and that may define a second port opening into the storage vessel. A first fill conduit may be connected to the storage vessel at the first port. A second fill conduit may be connected to the storage vessel at the second port. A control mechanism may be connected with the first and second fill conduits. A supply conduit may be connected to the control mechanism. The control mechanism may provide a flow path from the supply conduit to at least one of the first or second fill conduits to fill the storage vessel.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: MAHMOUD H. ABD ELHAMID, Mei Cai, Anne M. Dailly, Thomas A. Yersak
  • Publication number: 20170343162
    Abstract: An array of pressure vessels for storage of a compressed gas includes at least one Type 4 pressure vessel and at least one Type 1 pressure vessel. The Type 1 pressure vessel is in fluid communication with the at least one Type 4 pressure vessel. A metal wall of the at least one Type 1 pressure vessel has a Type 1 thermal conductance that is greater than a Type 4 thermal conductance of the at least one Type 4 pressure vessel.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Thomas A. Yersak, Jerome P. Ortmann, Mahmoud H. Abd Elhamid
  • Publication number: 20170331148
    Abstract: An all-solid-state lithium battery, thermo-electromechanical activation of Li2S in sulfide based solid state electrolyte with transition metal sulfides, and electromechanical evolution of a bulk-type all-solid-state iron sulfur cathode, are disclosed. An example all-solid-state lithium battery includes a cathode having a transition metal sulfide mixed with elemental sulfur to increase electrical conductivity. In one example method of in-situ electromechanically synthesis of Pyrite (FeS2) from Sulfide (FeS) and elemental sulfur (S) precursors for operation of a solid-state lithium battery, FeS+S composite electrodes are cycled at moderately elevated temperatures.
    Type: Application
    Filed: December 27, 2016
    Publication date: November 16, 2017
    Inventors: Thomas A. Yersak, Se-Hee Lee, Conrad Stoldt
  • Publication number: 20160248082
    Abstract: Described herein are various embodiments of methods of making an all-solid-state electrode material for a rechargeable battery comprising in a first mixing step, mixing one of a transition metal phosphide, a transition metal oxide, and a transition metal sulfide with sulfur to produce a first mixture, in a first heat-treating step, heating the first mixture to a temperature ranging between about 250 degrees C. and about 450 degrees C. to produce a heat-treated second mixture comprising an active material and a glass former/electrolyte precursor, in a second mixing step, mixing the second mixture with a glass/electrolyte modifier to produce a third mixture, and permitting the third mixture to react to produce the cathode material, the cathode material comprising the active material and a solid state electrolyte. Electrode materials, electrodes, and batteries made using the foregoing and similar methods are also described.
    Type: Application
    Filed: September 30, 2014
    Publication date: August 25, 2016
    Inventors: Thomas A. YERSAK, Tyler EVANS, Se-Hee LEE, Justin Michael WHITELEY
  • Publication number: 20140377664
    Abstract: An all-solid-state lithium battery, thermo-electromechanical activation of Li2S in sulfide based solid state electrolyte with transition metal sulfides, and electromechanical evolution of a bulk-type all-solid-state iron sulfur cathode, are disclosed. An example all-solid-state lithium battery includes a cathode having a transition metal sulfide mixed with elemental sulfur to increase electrical conductivity. In one example method of in-situ electomechanical synthesis of Pyrite (FeS2) from Sulfide (FeS) and elemental sulfur (S) precursors for operation of a solid-state lithium battery, FeS+S composite electrodes are cycled at moderately elevated temperatures.
    Type: Application
    Filed: January 9, 2013
    Publication date: December 25, 2014
    Inventors: Thomas A. Yersak, Se-Hee Lee, Conrad Stoldt