Patents by Inventor Thomas Adam
Thomas Adam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250125556Abstract: There is provided an apparatus for an enclosure of a direct current connection of a photovoltaic solar panel, the apparatus comprising: a housing comprising at least two parts that, when joined together, form a chamber for surrounding mating direct current connectors with an air gap, the housing comprising at least one support structure for positioning the direct current connectors in a central part of the chamber.Type: ApplicationFiled: July 8, 2022Publication date: April 17, 2025Inventors: Stuart Elmes, Kok Thong Tan, Thomas Adams
-
Patent number: 12261498Abstract: An actuator is introduced that utilizes the forces that result from placing a current carrying coil in a magnetic field to rotate a connected object about at least one axis. In some embodiments, the introduced coil actuator includes a coil of conductor coupled to an arm or other type of structural element that extends radially from an axis of rotation. The introduced coil actuator can be utilized to provide motion control in a variety of different applications such as gimbal mechanisms. In some embodiments, the introduced coil actuator can be implemented in a gimbal mechanism for adjusting an orientation of a device such as a camera relative to a connected platform such as the body of an aerial vehicle.Type: GrantFiled: July 27, 2022Date of Patent: March 25, 2025Assignee: Skydio, Inc.Inventors: Daniel Thomas Adams, Patrick Allen Lowe, Benjamin Scott Thompson, Abraham Galton Bachrach, Adam Parker Bry
-
Patent number: 12245339Abstract: An electrical heater assembly and an exhaust treatment assembly. The electrical heater assembly includes a heater body including an array of intersecting walls that form a plurality of channels extending in an axial direction. The intersecting walls and channels together define a honeycomb pattern of cells. A plurality of slots extend from an outer periphery of the heater body and terminate within the heater body. Each of the plurality of slots disconnects some of the cells of the heater body from each other to define a serpentine current-carrying path through the heater body. Each slot comprises a receptacle portion located between opposing portions of the slot. A plurality of slot separators located respectively in the receptacle portions. Each slot separator has dimensions greater than the opposing portions of the slot to provide support to the heater body in all directions perpendicular to the axial direction.Type: GrantFiled: August 16, 2024Date of Patent: March 4, 2025Assignee: CORNING INCORPORATEDInventor: Thomas Adam Collins
-
Publication number: 20250058871Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: August 30, 2024Publication date: February 20, 2025Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20250002144Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: April 25, 2024Publication date: January 2, 2025Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20240414814Abstract: An electrical heater assembly and an exhaust treatment assembly. The electrical heater assembly includes a heater body including an array of intersecting walls that form a plurality of channels extending in an axial direction. The intersecting walls and channels together define a honeycomb pattern of cells. A plurality of slots extend from an outer periphery of the heater body and terminate within the heater body. Each of the plurality of slots disconnects some of the cells of the heater body from each other to define a serpentine current-carrying path through the heater body. Each slot comprises a receptacle portion located between opposing portions of the slot. A plurality of slot separators located respectively in the receptacle portions. Each slot separator has dimensions greater than the opposing portions of the slot to provide support to the heater body in all directions perpendicular to the axial direction.Type: ApplicationFiled: August 16, 2024Publication date: December 12, 2024Inventor: Thomas Adam Collins
-
Patent number: 12161251Abstract: Described herein is a beverage system that is configured to produce beverages having different characteristics, such as different levels of carbonation including producing substantially non-carbonated beverages and carbonated beverages with a single machine. The beverage system includes a beverage appliance and a beverage container. The beverage container includes a beverage material, which can include a flavoring ingredient for a target beverage. The beverage appliance is used to access the beverage material from the beverage container and produce the target beverage. The beverage appliance and beverage container are adaptable to produce the target beverage having any of a range of carbonation levels or other characteristics.Type: GrantFiled: November 8, 2019Date of Patent: December 10, 2024Assignee: Bedford Systems LLCInventors: Enrico Cafaro, Nathaniel Davis, Linda Marie Donoghue, Thomas Fedorka, Catherine Fox, Patrick Lazatin, William Roger Mainwaring-Burton, Michael M. Martin, Bob McCall, Thomas J. Novak, Ian Scott Rice, Thomas Adam Sullivan, Bryan Ellis Wagenknecht, Barry Wood
-
Patent number: 12157553Abstract: The technology described herein relates to autonomous aerial vehicle rotor configurations. In some embodiments, the aerial vehicle includes a central body that extends along a longitudinal axis from a forward end to an aft end including a port side opposite a starboard side. Multiple rotor arms each have a proximal end coupled to the central body and a rotor assembly arranged at a distal end to provide propulsion for the aerial vehicle. The rotor assemblies include a first set of rotor assemblies and a second set of rotor assemblies. The first set of rotor assemblies are arranged in a non-inverted configuration on a top side of the aerial vehicle such that each rotor assembly includes an upward-facing rotor. The second set of rotor assemblies are arranged in an inverted configuration on a bottom side of the aerial vehicle such that each rotor assembly includes a downward-facing rotor.Type: GrantFiled: May 21, 2021Date of Patent: December 3, 2024Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Patent number: 12145714Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: GrantFiled: July 26, 2022Date of Patent: November 19, 2024Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Patent number: 12092254Abstract: A connection verifier for engaging a fluid connection including a tube end form, a fluid connector, and a snap ring having one or more protrusions, the connection verifier comprising a boot including an aperture, and a probe having a leading edge operatively arranged to engage the snap ring, and a circuit arranged in the aperture, the circuit operatively arranged to detect one or more forces applied to the leading edge, wherein the connection verifier is operatively arranged to determine if the fluid connection is properly connected based on the one or more forces applied to the leading edge.Type: GrantFiled: October 31, 2019Date of Patent: September 17, 2024Assignee: Oetiker NY, Inc.Inventors: Thomas Edwin Hall, II, Craig Andrew Corra, Joseph Thomas Adams
-
Patent number: 12077316Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: GrantFiled: August 31, 2022Date of Patent: September 3, 2024Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O′Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Patent number: 12082312Abstract: An electrical heater assembly, an exhaust treatment assembly, and method of manufacture. The electrical heater assembly includes a heater body including a plurality of slots disconnecting portions of the heater body from each other. Each slot includes a first end portion that extends to a second end portion, and a receptacle portion located between the first end portion and the second end portion. Portions of the heater body not disconnected by the plurality of slots form a serpentine current-carrying path through the heater body. The first end portion of each slot has a first width, the second end portion of each slot has a second width, and the receptacle portion of each slot has a third width, and the third width is larger than both the first width and the second width.Type: GrantFiled: April 26, 2022Date of Patent: September 3, 2024Assignee: Corning IncorporatedInventor: Thomas Adam Collins
-
Publication number: 20240251165Abstract: Embodiments are described for a stabilization system configured, in some embodiments, for stabilizing image capture from an aerial vehicle (e.g., a UAV). According to some embodiments, the stabilization systems employs both active and passive stabilization means. A passive stabilization assembly includes a counter-balanced suspension system that includes an elongated arm that extends into and is coupled to the body of a vehicle. The counter-balanced suspension system passively stabilizes a mounted device such as an image capture device to counter motion of the UAV while in use. In some embodiment the counter-balanced suspension system passively stabilizes a mounted image capture assembly that includes active stabilization means (e.g., a motorized gimbal and/or electronic image stabilization). In some embodiments, the active and passive stabilization means operate together to effectively stabilize a mounted image capture device to counter a wide range of motion characteristics.Type: ApplicationFiled: October 5, 2023Publication date: July 25, 2024Applicant: Skydio, Inc.Inventors: David Kalinowski, Stephen R. McClure, Patrick Allen Lowe, Daniel Thomas Adams, Benjamin Scott Thompson, Adam Parker Bry, Abraham Galton Bachrach
-
Publication number: 20240219666Abstract: Embodiments of the disclosure relate to an optical fiber cable having at least one optical fiber, a cable jacket, and a foam layer. The cable jacket has an inner surface and an outer surface. The outer surface is an outermost surface of the optical fiber cable, and the inner surface is disposed around the at least one optical fiber. The foam layer is disposed between the at least one optical fiber and the cable jacket. The foam layer includes a polymer component having from 30% to 100% by weight of a polyolefin elastomer (POE) or thermoplastic elastomer (TPE) and from 0% to 70% by weight of low density polyethylene (LDPE). The foam layer has a closed-cell morphology having pores with an average effective circle diameter of 10 ?m to 500 ?m. Further, the expansion ratio of the foam layer is at least 50%.Type: ApplicationFiled: March 14, 2024Publication date: July 4, 2024Inventors: Ryan Thomas Adams, Bradley Jerome Blazer, Anne Germaine Bringuier, Xiaole Cheng, Sergey Vladimirovich Chernykh, John Richard Jacks, Rebecca Elizabeth Sistare
-
Publication number: 20240209761Abstract: A heater body including an outer periphery. A plurality of slots extend from the outer periphery and terminate within the heater body. A plurality of core segments are defined between pairs of adjacent slots. A plurality of bend regions are arranged around respective terminal ends of the slots. Each pair of adjacent core segments is connected by a corresponding one of the bend regions. An auxiliary conductive feature is located within each of the bend regions. The plurality of slots electrically disconnect each pair of adjacent core segments from each other to create a serpentine current-carrying path that extends across the heater body through the electrically conductive material of the core segments and the bend regions. Each of the auxiliary conductive features locally reduces an electrical resistance of the heater body in the bend regions in comparison to the electrically conductive material alone.Type: ApplicationFiled: April 26, 2022Publication date: June 27, 2024Inventors: Thomas Adam Collins, David Robert Heine, Avinash Tukaram Shinde
-
Publication number: 20240206019Abstract: An electrical heater assembly, an exhaust treatment assembly, and method of manufacture. The electrical heater assembly includes a heater body including a plurality of slots disconnecting portions of the heater body from each other. Each slot includes a first end portion that extends to a second end portion, and a receptacle portion located between the first end portion and the second end portion. Portions of the heater body not disconnected by the plurality of slots form a serpentine current-carrying path through the heater body. The first end portion of each slot has a first width, the second end portion of each slot has a second width, and the receptacle portion of each slot has a third width, and the third width is larger than both the first width and the second width.Type: ApplicationFiled: April 26, 2022Publication date: June 20, 2024Inventor: Thomas Adam Collins
-
Publication number: 20240200826Abstract: An electrical heater assembly, fluid treatment assembly, and method of manufacturing same are disclosed. The electrical heater assembly includes a heater body including a resistive portion and a plurality of slits in the resistive portion. The slits electrically disconnect sections of the resistive portion from each other to define a serpentine current-carrying path through the resistive portion. An electrode attachment portion us connected at an end of the serpentine current-carrying path. An electrode is included that includes a first end that is electrically connected to the heater body at the electrode attachment portion. The first end extends in a transverse direction from the heater body.Type: ApplicationFiled: April 26, 2022Publication date: June 20, 2024Inventor: Thomas Adam Collins
-
Publication number: 20240200479Abstract: An electrical heater, an exhaust treatment assembly, and method of manufacture. The heater includes a resistive portion configured to generate heat when electrical current is passed therethrough. A plurality of slots extend into the resistive portion from an outer periphery of the resistive portion and define a serpentine current-carrying path extending through the resistive portion between a pair of electrode attachment portions. Each of the electrode attachment portions is connected to a respective end segment that is bounded between an outer periphery of the resistive portion and a respective first slot of the plurality of slots. At least one auxiliary slot in each of the end segments that extends from the outer periphery toward the first slot in a direction transverse to the first slot to bias current flow through a concentrated region adjacent to and extending along the first slot in each end segment.Type: ApplicationFiled: April 26, 2022Publication date: June 20, 2024Inventors: Thomas Adam Collins, David Robert Heine, Avinash Tukaram Shinde, Danhong Zhong
-
Patent number: 12012224Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: GrantFiled: August 30, 2022Date of Patent: June 18, 2024Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Patent number: 11970287Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: GrantFiled: July 26, 2022Date of Patent: April 30, 2024Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey