Patents by Inventor Thomas Amundsen

Thomas Amundsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030102379
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: June 28, 2002
    Publication date: June 5, 2003
    Applicant: Metrologic Instruments Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Timothy A. Good, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Mark C. Schmidt, Patrick A. Giordano
  • Publication number: 20030098353
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: June 28, 2002
    Publication date: May 29, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Thomas Amundsen, Mark C. Schmidt, Patrick A. Giordano
  • Publication number: 20030089778
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 23, 2002
    Publication date: May 15, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Sankar Ghosh, Thomas Amundsen
  • Patent number: 6561424
    Abstract: A method of and system for automatically identifying packages during package transport operations carried out by a human operator walking through the doorway of a storage warehouse, wherein, a laser scanning system is supported above the doorway defining a passageway of 3-D spatial extent, through which a human operator may walk while manually transporting packages bearing bar code symbols. In the illustrative embodiment, the laser scanning system includes a housing having a light transmission aperture, and a laser scanning pattern generator disposed within the housing. During operation of the system, the laser scanning pattern generator employs a holographic scanning disc to project through the light transmission aperture, an omnidirectional laser scanning pattern which is substantially confined within the spatial extent of a predefined 3-D scanning volume that spatially encompasses a substantial portion of the passageway of 3-D spatial extent.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: May 13, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: LeRoy Dickson, John Groot, Carl Harry Knowles, Thomas Amundsen
  • Publication number: 20030080190
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 23, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030080192
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: June 6, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6554189
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: April 29, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Thomas Amundsen, Gennady Germaine, Andrew D. Dehennis, LeRoy Dickson, Carl Harry Knowles
  • Publication number: 20030071128
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 23, 2002
    Publication date: April 17, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Timothy A. Good, Sankar Ghosh, Thomas Amundsen
  • Publication number: 20030071124
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 30, 2002
    Publication date: April 17, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6547144
    Abstract: A holographic laser scanning system for carrying out laser beam scanning operations with improved light collection efficiency. The holographic laser scanning system comprises: a housing of compact construction; a plurality of laser beam sources; a holographic scanning disc supporting a plurality of holographic optical elements having fringe structure of variable spatial frequency; a plurality of laser beam folding mirrors disposed about the holographic scanning disc; a plurality of light focusing surfaces disposed below the holographic scanning disc; and a plurality of photodetectors disposed at the focal points of the light focusing surfaces. During laser beam scanning operations, each laser beam is transmitted through the outer edge portion of each holographic optical element at an angle of incidence.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: April 15, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: LeRoy Dickson, John Groot, Carl Harry Knowles, Thomas Amundsen
  • Patent number: 6540140
    Abstract: A Internet-enabled method and system for designing and manufacturing bar code scanners of modular design and construction using globally-based information networks, such as the Internet, supporting the World Wide Web (WWW).
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: April 1, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Carl Harry Knowles, Leroy Dickson, Thomas Amundsen, John Groot, Thomas Carullo
  • Publication number: 20030052175
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 23, 2002
    Publication date: March 20, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030042308
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 5, 2002
    Publication date: March 6, 2003
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles
  • Patent number: 6523750
    Abstract: A holographic laser scanning system for scanning bar code symbols. The system comprises a holographic scanning disc having a plurality of holographic optical elements disposed thereon for scanning the plurality of laser beams directed at the same incident angle. Each holographic optical element as substantially the same Bragg angle. The parabolic light reflective surfaces are disposed beneath the holographic scanning discs. Each parabolic light reflective surface has an optical axis disposed off the Bragg angle of the holographic optical elements, for focusing towards a focal point above the holographic scanning disc, the reflected light rays collected by each holographic optical element. A photodetector is disposed at the focal point of the corresponding parabolic light reflective surface above the holographic scanning disc, and is radially aligned with the optical axis of one parabolic light reflective surface.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: February 25, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: LeRoy Dickson, John Groot, Carl Harry Knowles, Thomas Amundsen
  • Publication number: 20030034395
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith, The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 23, 2002
    Publication date: February 20, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz,, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6517001
    Abstract: A laser scanner of ultra-compact and modular design capable of reading bar and other types of graphical indicia, and also a method of designing and operating the same for use in diverse applications.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: February 11, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, LeRoy Dickson, Thomas Amundsen, Thomas J. Carullo, John Groot
  • Publication number: 20030019933
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 30, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Charles A. Naylor, Thomas Amundsen, Russell Joseph Dobbs
  • Publication number: 20030015587
    Abstract: A planar laser illumination and imaging system for illuminating an object and forming an image thereof. The planar laser illumination and imaging system which comprises an image formation and detection module having a field of view (FOV) focused at an image detecting array. A planar laser illumination array (PLIA) constructed from an plurality of planar laser illumination modules (PLIMs) is arranged in rectilinear manner.
    Type: Application
    Filed: January 28, 2002
    Publication date: January 23, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Publication number: 20030010823
    Abstract: In a planar light illumination and imaging (PLIIM) system, a planar light illumination module (PLIM) of compact construction produces a planar laser illumination beam (PLIB) which emanates substantially within a single plane along the direction of beam propagation towards an object to be optically illuminated and imaged. The PLIM comprises a module housing which has an axial extent, first and second end portions, a central bore formed along the axial extent, and a recess integrally formed in the second end portion. A visible laser diode (VLD) is mounted along the bore at the first end portion of the module housing, for producing a laser beam generally along the axial extent. A focusing lens is mounted along the bore between the first and second end portions, for focusing the laser beam to a predetermined focal point.
    Type: Application
    Filed: February 5, 2002
    Publication date: January 16, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Publication number: 20020195494
    Abstract: In a planar light illumination and imaging (PLIIM) system, a planar light illumination module (PLIM) of compact construction produces a planar laser illumination beam (PLIB) which emanates substantially within a single plane along the direction of beam propagation towards an object to be optically illuminated and imaged. The PLIM comprises a module housing which has an axial extent, first and second end portions, a central bore formed along the axial extent, and a recess integrally formed in the second end portion. A visible laser diode (VLD) is mounted along the bore at the first end portion of the module housing, for producing a laser beam generally along the axial extent. A focusing lens is mounted along the bore between the first and second end portions, for focusing the laser beam to a predetermined focal point.
    Type: Application
    Filed: January 28, 2002
    Publication date: December 26, 2002
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles