Patents by Inventor Thomas Asbury

Thomas Asbury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10526650
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids and/or copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PCR) or for additional primer extensions. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 7, 2020
    Assignee: Adaptive Biotechnologies Corporation
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Publication number: 20190040462
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids and/or copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PCR) or for additional primer extensions. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 7, 2019
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Patent number: 10077473
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids and/or copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PCR) or for additional primer extensions. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 18, 2018
    Assignee: Adaptive Biotechnologies Corp.
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Publication number: 20170335390
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids and/or copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PCR) or for additional primer extensions. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Application
    Filed: June 1, 2017
    Publication date: November 23, 2017
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Patent number: 9708657
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids anchor copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PCR) or for additional primer extension. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: July 18, 2017
    Assignee: Adaptive Biotechnologies Corp.
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Publication number: 20170191132
    Abstract: The invention includes a method for determining the disease status of an individual suffering from ankylosing spondylitis by monitoring the individual's T-cell repertoire for the presence and/or level of clonotypes encoding T-cell receptor chains with segments identical to ant or related to the peptide LCASSLEASGSSYNEQFFGPGTRLTV (SEQ ID NO: 1) or the peptide VYFCASSDSSGSTDTQYFGPGTRLTV (SEQ ID NO: 2). The invention also includes therapeutic antibodies specific for these peptides for ameliorating the effects ankylosing spondylitis.
    Type: Application
    Filed: February 3, 2017
    Publication date: July 6, 2017
    Inventors: Malek Faham, Victoria Carlton, Martin Moorhead, Jianbiao Zheng, Thomas Asbury
  • Patent number: 9394567
    Abstract: The invention is directed to methods for detecting and quantifying nucleic acid contamination in a tissue sample of an individual containing T cells and/or B cells, which is used for generating a sequence-based clonotype profile. In one aspect, the invention is implemented by measuring the presence and/or level of an endogenous or exogenous nucleic acid tag by which nucleic acid from an intended individual can be distinguished from that of unintended individuals. Endogenous tags include genetic identity markers, such as short tandem repeats, rare clonotypes or the like, and exogenous tags include sequence tags employed to determine clonotype sequences from sequence reads.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: July 19, 2016
    Assignee: ADAPTIVE BIOTECHNOLOGIES CORPORATION
    Inventors: Thomas Asbury, Victoria Carlton, Malek Faham, Stephen C. Macevicz, Martin Moorhead, Thomas Willis, Jianbiao Zheng
  • Publication number: 20150259734
    Abstract: The invention is directed to sequence-based profiling of populations of nucleic acids by multiplex amplification and attachment of one or more sequence tags to target nucleic acids anchor copies thereof followed by high-throughput sequencing of the amplification product. In some embodiments, the invention includes successive steps of primer extension, removal of unextended primers and addition of new primers either for amplification (for example by PRC) or for additional primer extension. Some embodiments of the invention are directed to minimal residual disease (MRD) analysis of patients being treated for cancer. Sequence tags incorporated into sequence reads provide an efficient means for determining clonotypes and at the same time provide a convenient means for detecting carry-over contamination from other samples of the same patient or from samples of a different patient which were tested in the same laboratory.
    Type: Application
    Filed: June 27, 2014
    Publication date: September 17, 2015
    Inventors: Thomas Asbury, Kieran Hervold, Chitra Kotwaliwale, Malek Faham, Martin Moorhead, Li Weng, Tobias Wittkop, Jianbiao Zheng
  • Publication number: 20150252422
    Abstract: The invention includes a method for determining the disease status of an individual suffering from ankylosing spondylitis by monitoring the individual's T-cell repertoire for the presence and/or level of clonotypes encoding T-cell receptor chains with segments identical to and/or related to the peptide LCASSLEASGSSYNEQFFGPGTRLTV (SEQ ID NO: 1) or the peptide VYFCASSDSSGSTDTQYFGPGTRLTV (SEQ ID NO: 2). The invention also includes therapeutic antibodies specific for these peptides for ameliorating the effects of ankylosing spondylitis.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 10, 2015
    Applicant: Sequenta LLC
    Inventors: Malek Faham, Victoria Carlton, Martin Moorhead, Jianbiao Zheng, Thomas Asbury