Patents by Inventor Thomas B. Blank

Thomas B. Blank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090098587
    Abstract: A method of screening for disorders of glucose metabolism such as impaired glucose tolerance and diabetes allows prevention, or early detection and treatment of diabetic complications such as cardiovascular disease, retinopathy, and other disorders of the major organs and systems. A mathematical algorithm evaluates the shape of a subject's glucose profile and classifies the profile into one of several predefined clusters, each cluster corresponding either to a normal condition or one of several abnormal conditions. The series of blood glucose values making up the glucose tolerance curve may be measured using any glucose analyzer including: invasive, minimally invasive and noninvasive types. The method is executed on a processing device programmed to perform the steps of the method. Depending on the outcome of the screening, a subject may be provided with additional information concerning their condition and/or counseled to consult further with their health care provider.
    Type: Application
    Filed: April 8, 2008
    Publication date: April 16, 2009
    Applicant: SENSYS MEDICAL, INC.
    Inventors: Donald Hetzel, Stephen L. Monfre, Kevin H. Hazen, Timothy L. Ruchti, Thomas B. Blank, Linda Hockersmith, Andrew Cone
  • Patent number: 7519406
    Abstract: A method and apparatus are provided for noninvasive sampling. More particularly, the method and apparatus relate to control of motion of an optical sample probe interface relative to a tissue sample site. A dynamic probe interface, is used to collect spectra of a targeted sample, control positioning of the sample probe relative to the tissue sample in terms of at least one of x-, y-, and z-axes, and/or control of sample tissue displacement to minimize spectral variations resulting from the sampling process and increase analyte property estimation precision and accuracy.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: April 14, 2009
    Assignee: Sensys Medical, Inc.
    Inventors: Thomas B. Blank, George M. Acosta, Timothy L. Ruchti, Mutua Mattu, Alexander D. Lorenz, Kevin H. Hazen, James R. Henderson
  • Patent number: 7509153
    Abstract: A method and apparatus for noninvasive glucose measurement measures glucose indirectly from the natural response of tissue to variations in analyte concentration. The indirect measurement method utilizes factors affected by or correlated with the concentration of glucose, such as refractive index, electrolyte distribution or tissue scattering. Measurement reliability is greatly improved by stabilizing optical properties of the tissue at the measurement site, thus blood perfusion rates at the sample site are regulated. Perfusion is monitored and stabilized by spectroscopically measuring a control parameter, such as skin temperature, that directly affects perfusion. The control parameter is maintained in a range about a set point, thus stabilizing perfusion. Skin temperature is controlled using a variety of means, including the use of active heating and cooling elements, passive devices, such as thermal wraps, and through the use of a heated coupling medium having favorable heat transfer properties.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 24, 2009
    Assignee: Sensys Medical, Inc.
    Inventors: Thomas B. Blank, Timothy L. Ruchti, Mutua Mattu, Marcy Makarewicz, Stephen L. Monfre, Alexander D. Lorenz
  • Patent number: 7505801
    Abstract: A placement guide apparatus with an improved hydration inducing plug used in coupling a noninvasive analyzer to a sampling site to determine analyte in the human body is disclosed. The hydration inducing plug includes at least one fluoropolymer that may be used as a coupling agent. The guide apparatus may further include an automated or semi-automated coupling fluid delivery system. Use of either of these couplers mitigates issues associated with related technology and enhances noninvasive analyte measurements, such as a near-IR diffuse reflectance based noninvasive glucose concentration analyzer.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: March 17, 2009
    Assignee: Sensys Medical, Inc.
    Inventors: Stephen L. Monfre, George M. Acosta, Thomas B. Blank, Kevin H. Hazen
  • Publication number: 20080319382
    Abstract: Sampling is controlled in order to enhance analyte concentration estimation derived from noninvasive sampling. More particularly, sampling is controlled using controlled fluid delivery to a region between a tip of a sample probe and a tissue measurement site. The controlled fluid delivery enhances coverage of a skin sample site with the thin layer of fluid. Delivery of contact fluid is controlled in terms of spatial delivery, volume, thickness, distribution, temperature, and/or pressure.
    Type: Application
    Filed: April 24, 2008
    Publication date: December 25, 2008
    Inventors: Thomas B. Blank, Stephen L. Monfre, Kevin H. Hazen, Timothy L. Ruchti, Christopher Slawinski, Sedar R. Brown
  • Publication number: 20080319299
    Abstract: The invention relates generally to a probe interface method and apparatus for use in conjunction with an optical based noninvasive analyzer. More particularly, an algorithm controls a sample probe position and attitude relative to a skin sample site before and/or during sampling. For example, a sample probe head of a sample module is controlled by an algorithm along the normal-to-skin-axis. Preferably, the sample probe head is positioned in terms of 3-D location in the x-, y-, and z-axes and is attitude orientated in terms of pitch, yaw, and roll. Further, attitude of the probe head is preferably orientated prior to contact of the sample probe head with the tissue sample using indicators, such as non-contact distance feedback from capacitance sensor, contacting or non-contacting optical sensors, and/or contact electrical sensors.
    Type: Application
    Filed: May 21, 2008
    Publication date: December 25, 2008
    Inventors: Timothy W. STIPPICK, Thomas B. BLANK, Timothy L. RUCHTI, Christopher SLAWINSKI
  • Publication number: 20080146899
    Abstract: A method and apparatus for easing the use of an optically based noninvasive analyzer is presented. More particularly, a simplified algorithm is used that removes the daily requirement of collecting and using a noninvasive spectrum to update a calibration model. In another embodiment, a guide is used to substantially reduce variation in sample probe placement in relation to a skin tissue sampling site, resulting in the ability to maintain calibration performance with the use of a reference analyte concentration, with or without the use of a reference spectrum collected nearby in time.
    Type: Application
    Filed: February 7, 2008
    Publication date: June 19, 2008
    Inventors: Timothy L. RUCHTI, Kevin H. Hazen, Thomas B. Blank
  • Patent number: 7383069
    Abstract: A method and apparatus for easing the use of an optically based noninvasive analyzer is presented. More particularly, a simplified algorithm is used that removes the daily requirement of collecting and using a noninvasive spectrum to update a calibration model. In another embodiment, a guide is used to substantially reduce variation in sample probe placement in relation to a skin tissue sampling site, resulting in the ability to maintain calibration performance with the use of a reference analyte concentration, with or without the use of a reference spectrum collected nearby in time.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 3, 2008
    Assignee: Sensys Medical, Inc.
    Inventors: Timothy L. Ruchti, Kevin H. Hazen, Thomas B. Blank
  • Patent number: 7333843
    Abstract: A placement guide apparatus with an improved hydration inducing plug used in coupling a noninvasive analyzer to a sampling site to determine analyte in the human body is disclosed. The hydration inducing plug includes at least one fluoropolymer that may be used as a coupling agent. The guide apparatus may further include an automated or semi-automated coupling fluid delivery system. Use of either of these couplers mitigates issues associated with related technology and enhances noninvasive analyte measurements, such as a near-IR diffuse reflectance based noninvasive glucose concentration analyzer.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: February 19, 2008
    Assignee: Sensys Medical, Inc.
    Inventors: Stephen L. Monfre, George Acosta, Thomas B. Blank, Kevin H. Hazen
  • Patent number: 7299080
    Abstract: A near IR spectrometer-based analyzer attaches continuously or semi-continuously to a human subject and collects spectral measurements for determining a biological parameter in the sampled tissue, such as glucose concentration. The analyzer includes an optical system optimized to target the cutaneous layer of the sampled tissue so that interference from the adipose layer is minimized. The optical system includes at least one optical probe. Spacing between optical paths and detection fibers of each probe and between probes is optimized to minimize sampling of the adipose subcutaneous layer and to maximize collection of light backscattered from the cutaneous layer. Penetration depth is optimized by limiting range of distances between paths and detection fibers. Minimizing sampling of the adipose layer greatly reduces interference contributed by the fat band in the sample spectrum, increasing signal-to-noise ratio.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: November 20, 2007
    Assignee: Sensys Medical, Inc.
    Inventors: George Acosta, James R. Henderson, N. Alan Abul-Haj, Timothy L. Ruchti, Stephen L. Monfre, Thomas B. Blank, Kevin H. Hazen
  • Patent number: 7233816
    Abstract: An optical sampling interface system minimizes and compensates error resulting from sampling variations and measurement site state fluctuations. Components include: An optical probe placement guide having an aperture wherein the optical probe is received, facilitates repeatable placement accuracy on surface of a tissue measurement site with minimal, repeatable disturbance to surface tissue. The aperture creates a tissue meniscus that minimizes interference due to surface irregularities and controls variation in tissue volume sampled; an occlusive element placed over the tissue meniscus isolates the meniscus from environmental fluctuations, stabilizing hydration at the site and thus, surface tension; an optical coupling medium eliminates air gaps between skin surface and optical probe; a bias correction element applies a bias correction to spectral measurements, and associated analyte measurements. When the guide is replaced, a new bias correction is determined for measurements done with the new placement.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 19, 2007
    Assignee: Sensys Medical, Inc.
    Inventors: Thomas B. Blank, George Acosta, Mutua Mattu, Marcy Makarewicz, Stephen L. Monfre, Alexander D. Lorenz, Timothy L. Ruchti
  • Patent number: 7206623
    Abstract: An optical sampling interface system minimizes and compensates error resulting from sampling variations and measurement site state fluctuations. Components include: An optical probe placement guide having an aperture wherein the optical probe is received, facilitates repeatable placement accuracy on surface of a tissue measurement site with minimal, repeatable disturbance to surface tissue. The aperture creates a tissue meniscus that minimizes interference due to surface irregularities and controls variation in tissue volume sampled; an occlusive element placed over the tissue meniscus isolates the meniscus from environmental fluctuations, stabilizing hydration at the site and thus, surface tension; an optical coupling medium eliminates air gaps between skin surface and optical probe; a bias correction element applies a bias correction to spectral measurements, and associated analyte measurements. When the guide is replaced, a new bias correction is determined for measurements done with the new placement.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: April 17, 2007
    Assignee: Sensys Medical, Inc.
    Inventors: Thomas B. Blank, George Acosta, Mutua Mattu, Marcy Makarewicz, Stephen L. Monfre, Alexander D. Lorenz, Timothy L. Ruchti
  • Patent number: 7183102
    Abstract: A method and apparatus for calibrating noninvasive or implantable glucose analyzers that uses either alternative invasive glucose determinations or noninvasive glucose determinations to calibrate noninvasive or implantable glucose analyzers. Use of an alternative invasive or noninvasive glucose determination in the calibration allows minimization of errors due to sampling methodology, and spatial and temporal variations that are built into the calibration model. An additional embodiment uses statistical correlations between noninvasive and alternative invasive glucose determinations and traditional invasive glucose determinations to adjust noninvasive or alternative invasive glucose concentrations to traditional invasive glucose concentrations. The invention provides a means for calibrating on the basis of glucose determinations that reflect the matrix observed and the variable measured by the analyzer more closely.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: February 27, 2007
    Assignee: Sensys Medical, Inc.
    Inventors: Stephen L. Monfre, Kevin H. Hazen, Timothy L. Ruchti, Thomas B. Blank, James R. Henderson
  • Patent number: 7133710
    Abstract: The invention involves the monitoring of a biological parameter through a compact analyzer. The preferred apparatus is a spectrometer based system that is attached continuously or semi-continuously to a human subject and collects spectral measurements that are used to determine a biological parameter in the sampled tissue. The preferred target analyze is glucose. The preferred analyzer is a near-IR based glucose analyzer for determining the glucose concentration in the body.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: November 7, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: George M. Acosta, James R. Henderson, N. Alan Abul Haj, Timothy L. Ruchti, Stephen L. Monfre, Thomas B. Blank, Kevin H. Hazen
  • Patent number: 7038774
    Abstract: Spectrometer instruments are characterized by classifying their spectra into previously defined clusters. The spectra are mapped to the clusters and a classification is made based on similarity of extracted spectral features to one of the previously defined clusters. Calibration models for each cluster are provided to compensate for instrumental variation. Calibration models are provided either by transferring a master calibration to slave calibrations or by calculating a separate calibration for each cluster. In one embodiment, a simplified method of calibration transfer maps clusters to each other, so that a calibration transferred between clusters models only the difference between the two clusters, substantially reducing the complexity of the model.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: May 2, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: Kevin H. Hazen, Thomas B. Blank, Stephen Monfre, Timothy L. Ruchti
  • Patent number: 7039446
    Abstract: Methods and system for noninvasive determination of tissue analytes utilize tissue properties as reflected in key features of an analytical signal to improve measurement accuracy and precision. Physiological conditions such as changes in water distribution among tissue compartments lead to complex alterations in the measured analytical signal of skin, leading to a biased noninvasive analyte measurement. Changes in the tissue properties are detected by identifying key features in the analytical signal responsive to physiological variations. Conditions not conducive to the noninvasive measurement are detected. Noninvasive measurements that are biased by physiological changes in tissue are compensated. In an alternate embodiment, the analyte is measured indirectly based on natural physiological response of tissue to changes in analyte concentration. A system capable of such measurements is provided.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: May 2, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: Timothy L. Ruchti, Thomas B. Blank, Alexander D. Lorenz, Stephen L. Monfre, Kevin H. Hazen, Suresh N. Thennadil
  • Patent number: 7010336
    Abstract: A solution for reducing interference in noninvasive spectroscopic measurements of tissue and blood analytes is provided. By applying a basis set representing various tissue components to a collected sample measurement, measurement interferences resulting from the heterogeneity of tissue, sampling site differences, patient-to-patient variation, physiological variation, and instrumental differences are reduced. Consequently, the transformed sample measurements are more suitable for developing calibrations that are robust with respect to sample-to-sample variation, variation through time, and instrument related differences. In the calibration phase, data associated with a particular tissue sample site is corrected using a selected subset of data within the same data set. This method reduces the complexity of the data and reduces the intra-subject, inter-subject, and inter-instrument variations by removing interference specific to the respective data subset.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 7, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: Alexander D. Lorenz, Timothy L. Ruchti, Thomas B. Blank, Kevin H. Hazen
  • Patent number: 6998247
    Abstract: Methods for calibrating noninvasive or implantable glucose analyzers utilize either alternative invasive glucose determinations or noninvasive glucose determinations for calibrating noninvasive or implantable glucose analyzers. Use of an alternative invasive or noninvasive glucose determination in the calibration allows minimization of errors due to sampling methodology, and spatial and temporal variation that are built into the calibration model. An additional method uses statistical correlations between noninvasive and alternative invasive glucose determinations and traditional invasive glucose determinations to adjust noninvasive or alternative invasive glucose concentrations to traditional invasive glucose concentrations. The methods provide a means for calibrating on the basis of glucose determinations that reflect the matrix observed and the variable measured by the analyzer more closely.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: February 14, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: Stephen L. Monfre, Kevin H. Hazen, Timothy L. Ruchti, Thomas B. Blank, James R. Henderson
  • Patent number: 6990364
    Abstract: Methods and apparatus for noninvasive determination of blood analytes, such as glucose, through NIR spectroscopy utilize optical properties of tissue as reflected in key spectroscopic features to improve measurement accuracy and precision. Physiological conditions such as changes in water distribution among tissue compartments lead to complex alterations in the measured absorbance spectrum of skin and reflect a modification in the effective pathlength of light, leading to a biased noninvasive glucose measurement. Changes in the optical properties of tissue are detected by identifying key features responsive to physiological variations. Conditions not conducive to noninvasive measurement of glucose are detected. Noninvasive glucose measurements that are biased by physiological changes in tissue are compensated. In an alternate embodiment, glucose is measured indirectly based on natural physiological response of tissue to glucose concentration. A spectroscopic device capable of such measurements is provided.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: January 24, 2006
    Assignee: Sensys Medical, Inc.
    Inventors: Timothy L. Ruchti, Suresh N. Thennadil, Thomas B. Blank, Alexander Lorenz, Stephen L. Monfre
  • Patent number: 6956649
    Abstract: A ceramic reference in conjunction with a spectrometer, a metallized ceramic material, and a method of utilizing a ceramic material as a reference in the ultraviolet, visible, near-infrared, or infrared spectral regions are presented. The preferred embodiments utilize a ceramic reference material to diffusely reflect incident source light toward a detector element for quantification in a reproducible fashion. Alternative embodiments metallize either the incident surface or back surface of to form a surface diffuse reflectance standard. Optional wavelength reference layers or protective layers may be added to the ceramic or to the metallized layer. The reference ceramic is used to provide a measure of optical signal of an analyzer as a function of the analyzers spatial, temporal, and environmental state.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: October 18, 2005
    Assignee: Sensys Medical, Inc.
    Inventors: George M. Acosta, Kevin H. Hazen, N. Alan Abul-Haj, Stephen L. Monfre, Thomas B. Blank