Patents by Inventor Thomas B. Eby

Thomas B. Eby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969604
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a flexible circuit assembly, is described. The flexible circuit assembly is contained within an electronics compartment between a battery, a housing, and a header assembly of the biostimulator. The flexible circuit assembly includes a flexible substrate that folds into a stacked configuration in which an electrical connector and an electronic component of the flexible circuit assembly are enfolded by the flexible substrate. An aperture is located in a fold region of the flexible substrate to allow a feedthrough pin of the header assembly to pass through the folded structure into electrical contact with the electrical connector. The electronic component can be a processor to control delivery of a pacing impulse through the feedthrough pin to a pacing tip. Other embodiments are also described and claimed.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 30, 2024
    Assignee: PACESETTER, INC.
    Inventors: Wade Keller, Thomas B. Eby, Sean McKenna, Brett C. Villavicencio
  • Publication number: 20240123240
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 11957917
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a flexible circuit assembly, is described. The flexible circuit assembly is contained within an electronics compartment between a battery, a housing, and a header assembly of the biostimulator. The flexible circuit assembly includes a flexible substrate that folds into a stacked configuration in which an electrical connector and an electronic component of the flexible circuit assembly are enfolded by the flexible substrate. An aperture is located in a fold region of the flexible substrate to allow a feedthrough pin of the header assembly to pass through the folded structure into electrical contact with the electrical connector. The electronic component can be a processor to control delivery of a pacing impulse through the feedthrough pin to a pacing tip. Other embodiments are also described and claimed.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 16, 2024
    Assignee: PACESETTER, INC.
    Inventors: Wade Keller, Thomas B. Eby, Sean McKenna, Brett C. Villavicencio
  • Patent number: 11957921
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 16, 2024
    Assignee: PACESETTER, INC.
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Patent number: 11904162
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element and an electrode mounted on a resilient scaffold, is described. The fixation element and the resilient scaffold are coupled to a housing of the biostimulator. The resilient scaffold can support the electrode against a target tissue at a location that is radially offset from a location where the fixation element anchors the housing to the target tissue. A flexibility of the resilient scaffold allows the electrode to conform to a shape and movement of the target tissue when the housing is rigidly fixed to the target tissue by the fixation element. The resiliently supported electrode that is radially offset from the anchor point can reliably pace the target tissue without piercing the target tissue. Other embodiments are also described and claimed.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: February 20, 2024
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Alex C. Soriano, Mark Carlson
  • Publication number: 20240024662
    Abstract: In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, and a delivery catheter including a tethering snare that is configured to be selectively extended out of the delivery catheter and retracted into the delivery catheter. In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, wherein the attachment member includes a central passage connected to a connection chamber, and a delivery catheter including first and second tethers that may be moved outwardly from and retracted into the delivery catheter.
    Type: Application
    Filed: October 2, 2023
    Publication date: January 25, 2024
    Inventors: Thomas B. Eby, Alan Klenk
  • Publication number: 20240001078
    Abstract: Disclosed herein is a delivery catheter for implanting a leadless biostimulator. The delivery catheter includes a shaft and a tubular body having a lumen and an atraumatic end. The atraumatic end includes at least one of a braided, woven or mesh construction configured to facilitate the atraumatic end changing diameter. When a distal portion of the shaft is coupled to a proximal region of the leadless biostimulator, at least one of distally displacing the tubular body relative to the shaft or proximally displacing the shaft relative to the tubular body causes the leadless biostimulator to be received in the volume of the atraumatic end and the atraumatic end to encompass the leadless biostimulator. Conversely, at least one of proximally displacing the tubular body relative to the shaft or distally displacing the shaft relative to the tubular body causes the leadless biostimulator to exit the volume of the atraumatic end.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Tracee Eidenschink, Thomas B. Eby, Matt Glimsdale, Brian J. Perszyk
  • Patent number: 11850435
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: December 26, 2023
    Assignee: PACESETTER, INC.
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 11786723
    Abstract: In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, and a delivery catheter including a tethering snare that is configured to be selectively extended out of the delivery catheter and retracted into the delivery catheter. In at least one embodiment, a system and method for implanting an implantable medical device (IMD) within a patient may include an IMD including a housing and an attachment member, wherein the attachment member includes a central passage connected to a connection chamber, and a delivery catheter including first and second tethers that may be moved outwardly from and retracted into the delivery catheter.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: October 17, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Alan Klenk
  • Patent number: 11779731
    Abstract: Disclosed herein is a delivery catheter for implanting a leadless biostimulator. The delivery catheter includes a shaft and a tubular body having a lumen and an atraumatic end. The atraumatic end includes at least one of a braided, woven or mesh construction configured to facilitate the atraumatic end changing diameter. When a distal portion of the shaft is coupled to a proximal region of the leadless biostimulator, at least one of distally displacing the tubular body relative to the shaft or proximally displacing the shaft relative to the tubular body causes the leadless biostimulator to be received in the volume of the atraumatic end and the atraumatic end to encompass the leadless biostimulator. Conversely, at least one of proximally displacing the tubular body relative to the shaft or distally displacing the shaft relative to the tubular body causes the leadless biostimulator to exit the volume of the atraumatic end.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 10, 2023
    Assignee: PACESETTER, INC.
    Inventors: Tracee Eidenschink, Thomas B. Eby, Matt Glimsdale, Brian J. Perszyk
  • Publication number: 20230285757
    Abstract: A leadless biostimulator has a housing including an electronics compartment, an electronics assembly mounted in the electronics compartment, a proximal electrode that disposed on and/or integrated into the housing, and an electrical feedthrough assembly. The electrical feedthrough assembly includes a distal electrode and a flange. The flange is mounted on the housing. The distal electrode is electrically isolated from the flange by an insulator and configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A mount is mounted on the flange and thereby mounted on the electrical feedthrough assembly. A fixation element is mounted on the mount and configured to facilitate fixation of the leadless biostimulator to tissue of a patient.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11691017
    Abstract: An electrical feedthrough assembly, which is configured to be mounted on a housing of a leadless biostimulator, comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within the housing of the leadless biostimulator.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: July 4, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Publication number: 20230191120
    Abstract: A medical tool includes a rotation mechanism that further includes a warning feature. The warning feature provides an indication when the rotation mechanism has achieved a number of rotations.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Bradley Knippel, Daniel Coyle, Jennifer Heisel, Bernhard Arnar, Brett Hillukka, Tracee Eidenschink, Thomas B. Eby, Paul Paspa, Joseph Ramon Callol
  • Publication number: 20230158316
    Abstract: A leadless biostimulator, such as a leadless pacemaker, includes a housing sized and configured to be implanted within a heart of a patient and includes both primary and secondary fixation features. The primary fixation feature is adapted to rotate to fix the leadless biostimulator to a wall of the heart during initial implantation. Once the leadless biostimulator is implanted, the secondary fixation feature is adapted to resist counter-rotation of the leadless biostimulator. The primary fixation feature may include a fixation helix configured to affix the housing to the heart by rotating in a screwing direction. The secondary fixation feature may include an apex to engage the heart to resist unscrewing of the primary fixation feature.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 25, 2023
    Inventors: Thomas B. Eby, Christopher R. Jenney, Craig E. Mar, Paul M. Paspa
  • Publication number: 20230090496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Patent number: 11607540
    Abstract: A medical tool includes a rotation mechanism that further includes a warning feature. The warning feature provides an indication when the rotation mechanism has achieved a number of rotations.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: March 21, 2023
    Assignee: PACESETTER, INC.
    Inventors: Bradley Knippel, Daniel Coyle, Jennifer Heisel, Bernhard Arnar, Brett Hillukka, Tracee Eidenschink, Thomas B. Eby, Paul Paspa, Joseph Ramon Callol
  • Patent number: 11577086
    Abstract: A leafless biostimulator, such as a leadless pacemaker, includes a housing sized and configured to be implanted within a heart of a patient and includes both primary and secondary fixation features. The primary fixation feature is adapted to rotate to fix the leadless biostimulator to a wall of the heart during initial implantation. Once the leadless biostimulator is implanted, the secondary fixation feature is adapted to resist counter-rotation of the leadless biostimulator. The primary fixation feature may include a fixation helix configured to affix the housing to the heart by rotating in a screwing direction. The secondary fixation feature may include an apex to engage the heart to resist unscrewing of the primary fixation feature.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: February 14, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Christopher R. Jenney, Craig E. Mar, Paul M. Paspa
  • Patent number: 11541243
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Publication number: 20220379110
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element and an electrode mounted on a resilient scaffold, is described. The fixation element and the resilient scaffold are coupled to a housing of the biostimulator. The resilient scaffold can support the electrode against a target tissue at a location that is radially offset from a location where the fixation element anchors the housing to the target tissue. A flexibility of the resilient scaffold allows the electrode to conform to a shape and movement of the target tissue when the housing is rigidly fixed to the target tissue by the fixation element. The resiliently supported electrode that is radially offset from the anchor point can reliably pace the target tissue without piercing the target tissue. Other embodiments are also described and claimed.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Thomas B. Eby, Alex C. Soriano, Mark Carlson
  • Patent number: 11433248
    Abstract: Disclosed herein is a medical leadless pacemaker delivery system adapted to engage and disengage with leadless pacemakers to allow for the repeated use of the leadless pacemaker delivery system in delivering and implanting multiple leadless pacemakers into a patient heart in a serial or repeated manner. The leadless pacemaker delivery system includes a handle, an attachment mechanism, a torque portion, and a rotation limiter. The handle includes a housing. The attachment mechanism is operably coupled to the housing and configured to actuate between a released state and an engaged state. The torque portion is operably coupled to the housing and rotatable relative to the housing to transition the attachment mechanism between the released and engaged states. The torque portion includes a shaft. The rotation limiter is in sliding engagement with the shaft between a first stop and a second stop. The rotation limiter includes a first helical thread.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: September 6, 2022
    Assignee: PACESETTER, INC.
    Inventors: Friedrich Ho, Thomas B. Eby, Keith Phillip Laby