Patents by Inventor Thomas B. Hoegh

Thomas B. Hoegh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200316373
    Abstract: A method including chronically implanting a nerve cuff electrode on a portion of a hypoglossal nerve, chronically implanting a respiration sensing lead subcutaneously in a thorax of a patient, the respiration sensing lead having a plurality of bio-impedance electrodes defining at least one bio-impedance vector. The method may also include sensing a bio-impedance signal corresponding to respiration via a bio-impedance vector on an anterior side of the thorax, analyzing the bio-impedance signal to identify onsets of expiration, predicting an onset of a future expiratory phase, and delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the bio-impedance signal; wherein stimulus delivery is initiated before the onset of the future expiratory phase and continued during an entire inspiratory phase, and wherein the method is performed without identifying an onset of an inspiratory phase.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 8, 2020
    Applicant: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Publication number: 20200254245
    Abstract: An implantable neurostimulation system comprises a stimulation delivery lead and a neurostimulator. The stimulation delivery lead is coupled to an electrode. The neurostimulator is adapted to deliver a neurostimulation signal to the subject and comprises a microprocessor. The microprocessor is programmed to identify a stimulation operating window for the therapy including a first threshold and a second threshold. The second threshold comprises an awake level and an asleep level. Identifying the stimulation operating window comprises titrating a stimulation setting of the neurostimulator while the subject is awake until the first threshold and the awake level of the second threshold are identified. Identifying the stimulation operating window further comprises subsequently repeating the step of titrating the stimulation setting of the neurostimulator while the subject is asleep until the asleep level of the second threshold is identified.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 13, 2020
    Applicant: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Patent number: 10737094
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: August 11, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Patent number: 10632308
    Abstract: A method including chronically implanting a nerve cuff electrode on a portion of a hypoglossal nerve, chronically implanting a respiration sensing lead subcutaneously in a thorax of a patient, the respiration sensing lead having a plurality of bio-impedance electrodes defining at least one bio-impedance vector. The method may also include sensing a bio-impedance signal corresponding to respiration via a bio-impedance vector on an anterior side of the thorax, analyzing the bio-impedance signal to identify onsets of expiration, predicting an onset of a future expiratory phase, and delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the bio-impedance signal; wherein stimulus delivery is initiated before the onset of the future expiratory phase and continued during an entire inspiratory phase, and wherein the method is performed without identifying an onset of an inspiratory phase.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 28, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 10632306
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 28, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Patent number: 10335042
    Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: July 2, 2019
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
  • Publication number: 20190151656
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Application
    Filed: October 18, 2018
    Publication date: May 23, 2019
    Applicant: CYBERONICS, INC.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Patent number: 10105538
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 23, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Publication number: 20180200512
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Applicant: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Publication number: 20180078761
    Abstract: A method including chronically implanting a nerve cuff electrode on a portion of a hypoglossal nerve, chronically implanting a respiration sensing lead subcutaneously in a thorax of a patient, the respiration sensing lead having a plurality of bio-impedance electrodes defining at least one bio-impedance vector. The method may also include sensing a bio-impedance signal corresponding to respiration via a bio-impedance vector on an anterior side of the thorax, analyzing the bio-impedance signal to identify onsets of expiration, predicting an onset of a future expiratory phase, and delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the bio-impedance signal; wherein stimulus delivery is initiated before the onset of the future expiratory phase and continued during an entire inspiratory phase, and wherein the method is performed without identifying an onset of an inspiratory phase.
    Type: Application
    Filed: July 31, 2017
    Publication date: March 22, 2018
    Applicant: CYBERONICS, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 9913982
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: March 13, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Publication number: 20180008824
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Application
    Filed: August 25, 2017
    Publication date: January 11, 2018
    Applicant: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Patent number: 9744354
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 29, 2017
    Assignee: CYBERONICS, INC.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson, Peter R. Eastwood, David R. Hillman
  • Publication number: 20160183807
    Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.
    Type: Application
    Filed: July 16, 2015
    Publication date: June 30, 2016
    Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
  • Patent number: 9149633
    Abstract: Implantable medical leads and systems that include lead utilize reflection points within the lead to control radio frequency current that has been induced onto one or more filars within the lead. The radio frequency current may be controlled by the reflection points to block at least some of the radio frequency current from reaching an electrode of the lead and to dissipate at least some of the radio frequency current as heat on the filar. Controlling the radio frequency current thereby reduces the amount that is dissipated into bodily tissue through one or more electrodes of the lead and reduces the likelihood of tissue damage. The reflection points may be created by physical changes such as to material or size in the filar and/or in insulation layers that may be present such as an inner jacket about the filar and an outer jacket formed by the body of the lead.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 6, 2015
    Assignee: MEDTRONIC, INC.
    Inventors: Carl D. Wahlstrand, Thomas B. Hoegh
  • Publication number: 20150094962
    Abstract: Embodiments include a screening method for evaluating patient suitability for an implanted hypoglossal nerve stimulation (HGNS) device. The screening method evaluates blood oxygen data relating to respiratory events, with the blood oxygen data providing mean blood oxygen desaturation values for comparison to severity thresholds to identify patients who are likely or unlikely to benefit from the implantation of the HGNS device.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventors: Thomas B. HOEGH, Daniel A. PARRISH
  • Publication number: 20150057730
    Abstract: Implantable medical leads and systems utilize reflection points within the lead to control radio frequency current that has been induced onto one or more filars. The radio frequency current may be controlled by the reflection points to block at least some of the radio frequency current from reaching an electrode of the lead and to dissipate at least some of the radio frequency current as heat on the filar. Controlling the radio frequency current thereby reduces the amount that is dissipated into bodily tissue through one or more electrodes of the lead and reduces the likelihood of tissue damage. The reflection points may be created by physical changes such as to material or size in the filar and/or in insulation layers that may be present such as an inner jacket about the filar and an outer jacket formed by the body of the lead.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Inventors: Carl D. Wahlstrand, Thomas B. Hoegh
  • Patent number: 8880188
    Abstract: Implantable medical leads and systems that include lead utilize reflection points within the lead to control radio frequency current that has been induced onto one or more filars within the lead. The radio frequency current may be controlled by the reflection points to block at least some of the radio frequency current from reaching an electrode of the lead and to dissipate at least some of the radio frequency current as heat on the filar. Controlling the radio frequency current thereby reduces the amount that is dissipated into bodily tissue through one or more electrodes of the lead and reduces the likelihood of tissue damage. The reflection points may be created by physical changes such as to material or size in the filar and/or in insulation layers that may be present such as an inner jacket about the filar and an outer jacket formed by the body of the lead.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Thomas B. Hoegh
  • Patent number: RE48024
    Abstract: Devices, systems and methods for nerve stimulation for OSA therapy.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: June 2, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Sidney F. Hauschild, Paula M. Kaplan, Brian D. Kuhnley, Keith E. Jasperson, Wondimeneh Tesfayesus, Christopher K. Thorp
  • Patent number: RE48025
    Abstract: In one embodiment, a method for maintaining patency of an upper airway of a patient to treat obstructive sleep apnea may include delivering an electrical stimulation to a portion of a superior laryngeal nerve via a nerve cuff when the nerve cuff is adjacent an external surface of the superior laryngeal nerve, the nerve cuff having a plurality of electrodes, wherein the nerve cuff is configured to be connected to an electrical stimulator via a stimulation lead.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: June 2, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Sidney F. Hauschild, Paula M. Kaplan, Brian D. Kuhnley, Keith E. Jasperson, Wondimeneh Tesfayesus, Christopher K. Thorp