Patents by Inventor Thomas Bünger

Thomas Bünger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9462706
    Abstract: A device for a system for traffic monitoring of vehicles in road traffic, the device having a first mounting frame and a second mounting frame, which can be secured relative to each other by inner fixing elements. At least the first mounting frame has a cylindrical, especially cuboidal, shape. At least one device for recording a traffic situation can be disposed or is disposed in the first mounting frame and wherein at least the first mounting frame is accessible from four sides.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: October 4, 2016
    Assignee: JENOPTIK Robot GmbH
    Inventors: Volker Paetzoldt, Thomas Buenger, Stephan Maserski, Joerg Friessner
  • Patent number: 9368585
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 14, 2016
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Stefan Eichler, Thomas Bünger, Michael Butter, Rico Rühmann, Max Scheffer-Czygan
  • Patent number: 9181633
    Abstract: A device for heat treating (annealing) a III-V semiconductor wafer comprises at least one wafer support unit which is dimensioned such that a cover provided above the wafer surface is either spaced without any distance or with a distance of maximally about 2 mm to the wafer surface. A process for heat treating III-V semiconductor wafers having diameters larger than 100 mm and a dislocation density below 1×104 cm?2 is carried out in the device of the invention. SI GaAs wafers produced have an at least 25% increased characteristic fracture strength (Weibull distribution), an improved radial macroscopic and mesoscopic homogeneity and an improved quality of the mechano-chemically polished surface. The characteristic fracture strength is higher than 1900 MPa.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: November 10, 2015
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Manfred Jurisch, Stefan Eichler, Thomas Bünger, Berndt Weinert, Frank Börner
  • Publication number: 20140312749
    Abstract: A device for a system for traffic monitoring of vehicles in road traffic, the device having a first mounting frame and a second mounting frame, which can be secured relative to each other by inner fixing elements. At least the first mounting frame has a cylindrical, especially cuboidal, shape. At least one device for recording a traffic situation can be disposed or is disposed in the first mounting frame and wherein at least the first mounting frame is accessible from four sides.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 23, 2014
    Applicant: JENOPTIK Robot GmbH
    Inventors: Volker PAETZOLDT, Thomas BUENGER, Stephan MASERSKI, Joerg FRIESSNER
  • Patent number: 8771560
    Abstract: In a process for manufacturing doped semiconductor single crystal comprises solidifying in a crucible, the amount of dopant is added into the semiconductor melt after the beginning of the crystal growth onto the seed crystal, or after at least partial solidification of the semiconductor single crystal in a conical or tapered portion of the crucible. Dopant may be partially added in advance into the crucible, with the remainder added into the semiconductor melt as described. Type III-V semiconductor single crystals or wafers having a diameter of at least about 100 mm, can be prepared having an electrical conductivity of at least about 250 Siemens/cm, and/or an electric resistivity of at most about 4×10?3 ?cm, and/or a significantly improved ratio of hall mobility to charge carrier concentration.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 8, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ulrich Kretzer, Stefan Eichler, Thomas Bünger
  • Publication number: 20140103493
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Stefan EICHLER, Thomas BÜNGER, Michael BUTTER, Rico RÜHMANN, Max SCHEFFER-CZYGAN
  • Patent number: 8652253
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: February 18, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Stefan Eichler, Thomas Bünger, Michael Butter, Rico Rühmann, Max Scheffer-Czygan
  • Patent number: 8025729
    Abstract: A device for heat treating (annealing) a III-V semiconductor wafer comprises at least one wafer support unit which is dimensioned such that a cover provided above the wafer surface is either spaced without any distance or with a distance of maximally about 2 mm to the wafer surface. A process for heat treating III-V semiconductor wafers having diameters larger than 100 mm and a dislocation density below 1×104 cm?2 is carried out in the device of the invention. SI GaAs wafers produced have an at least 25% increased characteristic fracture strength (Weibull distribution), an improved radial macroscopic and mesoscopic homogeneity and an improved quality of the mechano-chemically polished surface. The characteristic fracture strength is higher than 1900 MPa.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: September 27, 2011
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Manfred Jurisch, Stefan Eichler, Thomas Bünger, Berndt Weinert, Frank Börner
  • Patent number: 7410540
    Abstract: In a process for manufacturing doped semiconductor single crystal comprises solidifying in a crucible, the amount of dopant is added into the semiconductor melt after the beginning of the crystal growth onto the seed crystal, or after at least partial solidification of the semiconductor single crystal in a conical or tapered portion of the crucible. Dopant may be partially added in advance into the crucible, with the remainder added into the semiconductor melt as described. Type III-V semiconductor single crystals or wafers having a diameter of at least about 100 mm, can be prepared having an electrical conductivity of at least about 250 Siemens/cm, and/or an electric resistivity of at most about 4×10?3 ?cm, and/or a significantly improved ratio of hall mobility to charge carrier concentration.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: August 12, 2008
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ulrich Kretzer, Stefan Eichler, Thomas Bünger
  • Patent number: 6712904
    Abstract: A device is made available for producing monocrystals, for example large-diameter gallium arsenide monocrystals, that has a cylindrical heating appliance with a floor heater (2) and a cover heater (3). The heating surfaces of the floor and the cover heater are considerably larger than the cross-sectional area of the monocrystal to be produced. In addition, an insulator (6) is planned for the reaction space that is designed to prevent a radial heat flow and the guarantee a strictly axial heat flow over the complete height of the reaction space between the cover heater (3) and the floor heater (2).
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: March 30, 2004
    Assignees: Forschungszentrum Julich GmbH, Frieberger Compound Materials GmbH
    Inventors: Klaus Sonnenberg, Eckhard Küssel, Thomas Bünger, Tilo Flade, Berndt Weinert
  • Patent number: 6358315
    Abstract: In a method and an apparatus for producing monocrystals, in particular of gallium arsenide monocrystals, the crystal growth is carried out with a thermal shock resistant nucleus which is freely standing within a nucleus channel and the interspace in the nucleus channel between the nucleus and the crucible is filled with liquid boric oxide.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: March 19, 2002
    Assignees: Freiberger Compound Materials GmbH, Forschungszentrum Jülich GmbH
    Inventors: Eckhard Küssel, Thomas Bünger, Tilo Flade, Berndt Weinert, Klaus Sonnenberg