Patents by Inventor Thomas Barabas

Thomas Barabas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103087
    Abstract: A battery system having a battery pack with a positive pole, a negative pole, at least one battery cell, and a pack voltage divider, and at least one high-voltage coupling network electrically connectable to the battery pack, having a positive terminal, a negative terminal, and a link voltage divider. The pack voltage divider comprises a first measuring resistance (RM1) and a first measuring switch (SM1) connected to one another between the negative pole and a first reference point, and a second measuring resistance (RM2) and a second measuring switch (SM2) connected to one another between the positive pole and the first reference point. The link voltage divider comprises a third measuring resistance (RM3) connected between the negative terminal and a second reference point, and a fourth measuring resistance (RM4) connected between the positive terminal and the second reference point.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 28, 2024
    Inventors: Boris Lander, Chrysanthos Tzivanopoulos, Peter Kohn, Thomas Barabas
  • Patent number: 11865925
    Abstract: The invention relates to a method for operating an electric energy store (1), to an electric energy store (1), and to a device, having an electric energy storage module (18), a switch unit (4), and a first and second connection (5, 7). The method has the following steps which follow one another chronologically: in a first step, a signal of a sensor of the electric energy store (1) is evaluated; in a second step, a critical state of the electric energy store (1) is ascertained; in a third step, an electrically conductive connection between the electric energy storage module (18) and the first and second connection (5, 7) is interrupted in the charge direction by means of the switch unit (4), while simultaneously the electrically conductive connection between the electric energy storage module (18) and the first and second connection (5, 7) remains connected in the discharge direction.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 9, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Weber, Joerg Schneider, Peter Kohn, Sabine Arnold, Thomas Barabas
  • Publication number: 20230236248
    Abstract: A diagnostic circuit (60) for diagnosing a battery disconnect unit (100) for disconnecting a battery system (200) from an electrical system (300). The battery disconnect unit (100) includes a first switching element (S1) and a second switching element (S2). A first connection of the first switching element (S1) is connected to a first node point (8), and a second connection of the first switching element (S1) is connected to the first terminal (2). A first connection of the second switching element (S2) is connected to the first node point (8), and a second connection of the second switching element (S2) is connected to the second terminal (4). The diagnostic circuit (60) includes a first voltage divider (61) and a second voltage divider (62).
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Johannes Swoboda, Chrysanthos Tzivanopoulos, Thomas Barabas
  • Publication number: 20230238808
    Abstract: A battery disconnect unit (100) for disconnecting a battery system (200) comprising at least one battery cell (5), from an electrical system (300). The battery disconnect unit (100) comprises a first terminal (2), a second terminal (4), a first switching element (S1), a second switching element (S2) and a current sensing resistor (6). A first connection of the first switching element (S1) is connected to a first connection of the current sensing resistor (6), and a second connection of the first switching element (S1) is connected to the first terminal (2). A first connection of the second switching element (S2) is connected to a second connection of the current sensing resistor (6), and a second connection of the second switching element (S2) is connected to the second terminal (4).
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Johannes Swoboda, Chrysanthos Tzivanopoulos, Thomas Barabas
  • Publication number: 20220250478
    Abstract: The invention relates to a method for operating an electric energy store (1), to an electric energy store (1), and to a device, having an electric energy storage module (18), a switch unit (4), and a first and second connection (5, 7). The method has the following steps which follow one another chronologically: in a first step, a signal of a sensor of the electric energy store (1) is evaluated; in a second step, a critical state of the electric energy store (1) is ascertained; in a third step, an electrically conductive connection between the electric energy storage module (18) and the first and second connection (5, 7) is interrupted in the charge direction by means of the switch unit (4), while simultaneously the electrically conductive connection between the electric energy storage module (18) and the first and second connection (5, 7) remains connected in the discharge direction.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 11, 2022
    Inventors: Jochen Weber, Joerg Schneider, Peter Kohn, Sabine Arnold, Thomas Barabas