Patents by Inventor Thomas Bifano

Thomas Bifano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027655
    Abstract: An exemplary imaging system is provided. The imaging system includes a light source configured to illuminate a plurality of spatially separated regions of a material structure producing a first illumination. A lens produces an image of the spatially separated regions. A lens array magnifies the spatially separated regions of the image. The lens array produces a mosaic image comprised of magnified subimages of each region spatially separated region. A camera sensor to record the image.
    Type: Application
    Filed: July 18, 2023
    Publication date: January 25, 2024
    Applicants: Trustees of Boston University, Massachusetts Institute of Technology
    Inventors: Thomas Bifano, Jerome Mertz, Marshall Ma, Devin Beaulieu
  • Patent number: 10175476
    Abstract: A system and method for correction of aberrations in a solid immersion microscopy system using a deformable mirror. A solid immersion lens is provided having a surface configured to make optical contact with a nearly planar surface of a substrate, an object to be imaged disposed on the opposite side of the substrate. A convex surface of the solid immersion lens faces an objective lens. A deformable mirror assembly, including a plurality of individually controllable actuators, receives light transmitted from the object. A control system controls in communication with the deformable mirror assembly provides individual actuation of each of the actuators of the deformable mirror to compensate or counteract the effects of aberrations.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: January 8, 2019
    Assignee: Trustees of Boston University
    Inventors: Bennett B. Goldberg, Thomas Bifano, Selim M. Unlu, Euan Ramsay, Fatih Hakan Koklu, Jerome Mertz, Yang Lu, Abdulkadir Yurt, Christopher Stockbridge
  • Patent number: 10018817
    Abstract: Embodiments of the invention provide an imaging system and method using adaptive optics and optimization algorithms for imaging through highly scattering media in oil reservoir applications and lab-based petroleum research. Two-/multi-photon fluorescence microscopy is used in conjunction with adaptive optics for enhanced imaging and detection capabilities in scattering reservoir media. Advanced fluorescence techniques are used to allow for super-penetration imaging to compensate for aberrations both in and out of the field of interest, extending the depth at which pore geometry can be imaged within a rock matrix beyond the current capability of confocal microscopy. The placement of a Deformable Mirror or Spatial Light Modulator for this application, in which scattering and index mismatch are dominant aberrations, is in an optical plane that is conjugate to the pupil plane of the objective lens in the imaging system.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 10, 2018
    Assignees: ARAMCO SERVICES COMPANY, SAUDI ARABIAN OIL COMPANY, TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Thomas Bifano, Shannon L. Eichmann, Bennett B. Goldberg, Mazen Kanj, Hari P. Paudel, William Shain
  • Publication number: 20160259156
    Abstract: Embodiments of the invention provide an imaging system and method using adaptive optics and optimization algorithms for imaging through highly scattering media in oil reservoir applications and lab-based petroleum research. Two-/multi-photon fluorescence microscopy is used in conjunction with adaptive optics for enhanced imaging and detection capabilities in scattering reservoir media. Advanced fluorescence techniques are used to allow for super-penetration imaging to compensate for aberrations both in and out of the field of interest, extending the depth at which pore geometry can be imaged within a rock matrix beyond the current capability of confocal microscopy. The placement of a Deformable Mirror or Spatial Light Modulator for this application, in which scattering and index mismatch are dominant aberrations, is in an optical plane that is conjugate to the pupil plane of the objective lens in the imaging system.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Inventors: Thomas Bifano, Shannon L. Eichmann, Bennett B. Goldberg, Mazen Kanj, Hari P. Paudel, William Shain
  • Publication number: 20150185474
    Abstract: A system and method for correction of aberrations in a solid immersion microscopy system using a deformable mirror. A solid immersion lens is provided having a surface configured to make optical contact with a nearly planar surface of a substrate, an object to be imaged disposed on the opposite side of the substrate. A convex surface of the solid immersion lens faces an objective lens. A deformable mirror assembly, including a plurality of individually controllable actuators, receives light transmitted from the object. A control system controls in communication with the deformable mirror assembly provides individual actuation of each of the actuators of the deformable mirror to compensate or counteract the effects of aberrations.
    Type: Application
    Filed: July 15, 2013
    Publication date: July 2, 2015
    Inventors: Bennett B. Goldberg, Thomas Bifano, Selim M. Unlu, Euan Ramsay, Fatih Hakan Koklu, Jerome Mertz, Yang Lu, Abdulkadir Yurt, Christopher Stockbridge
  • Publication number: 20070297042
    Abstract: A deformable reflective surface is disclosed that may be used with a retroreflector to provide a modulated retroreflector. The modulated retroreflector may be used in communication systems such as optical laser communication systems wherein an incident beam is reflected back to the source, as modulated by the modulated retroreflector. In an undeformed state, the deformable reflective surface provides substantially uniform reflectance to transmit a reflected beam substantially parallel to an incident beam. In a deformed state, the deformable reflective surface disperses an incident beam to prevent uniform transmission of the incident beam back to a source. By interrupting operation of the retroflector with a deformed reflective surface, the retroreflector permits modulation of the reflected beam, based on an input modulation signal that can contain voice or sensor data.
    Type: Application
    Filed: November 10, 2005
    Publication date: December 27, 2007
    Inventor: Thomas Bifano
  • Publication number: 20070272864
    Abstract: A microbolometer sensor has a first cantilever supported above a substrate and formed of a bimaterial so as to deform in a first direction in response to incident radiation, and a second cantilever supported above the substrate and formed of a bimaterial so oriented as to cause the second cantilever to deflect oppositely to the first cantilever in response to radiation. The first and second cantilevers have a spacing therebetween that varies as a function of radiation incident on said first and second cantilevers. Means for sensing the deflection of the first and second cantilevers to provide an indication of the incident radiation is provided. A process of forming a micromechanical cantilever structure is also providing by irradiating a cantilever with an ion beam, whereby the cantilever is flattened. Also, the cantilever can be annealed in a rapid thermal annealing process to flatten the cantilever.
    Type: Application
    Filed: November 22, 2004
    Publication date: November 29, 2007
    Inventors: Biao Li, Xin Zhang, Thomas Bifano, Andre Sharon
  • Patent number: 6705345
    Abstract: An array of micro valves, and the process for its formation, used for control of a fluid flow and having a substrate with a plurality of apertures for directing the fluid to flow from one side to another. A micromechanically formed fluid seal surrounds each aperture along with a valve diaphragm associated with each seal and micromechanically formed to selectively open and close the aperture by making contact with the seal. Electrical contact is made to the valve diaphragms and substrate for selective valve closure or opening. A conduit leads a fluid flow to the underside of the array and a further conduit leads it away from the array after passing through the selectively opened diaphragms.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: March 16, 2004
    Assignee: The Trustees of Boston University
    Inventor: Thomas Bifano
  • Patent number: 6529311
    Abstract: Method and apparatus for forming an array of reflective elements for spatial light modulation. The array includes a substrate supporting electronically addressable actuators, each associated with a corresponding reflective element, a coupling attaching each actuator to the corresponding reflective element to place each reflective element in a substantially planar surface. Each electronically addressable actuator responds to predetermined addressing from a processing circuit to reposition the corresponding reflective element out of the planar surface a predetermined distance identified in the predetermined electronic addressing.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: March 4, 2003
    Assignee: The Trustees of Boston University
    Inventors: Thomas Bifano, Mark Horenstein