Patents by Inventor Thomas Blankinship

Thomas Blankinship has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8735803
    Abstract: A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 27, 2014
    Assignee: Precision Energy Services, Inc
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Patent number: 8542353
    Abstract: A refractive index sensor having one or more sources, an adaptive optical element or scanner, imaging optics, a sensing optic, and one or more detectors. The scanner impinges a signal from the source into the sensing optic and onto a sensor-sample interface at sequential angles of incidence. The detector response increases dramatically to signals reflected from the interface at corresponding sequential angles of reflection equal to or greater than a critical angle. The refractive index sensor also uses an input lens between the scanner and the sensing optic and uses an output lens between the sensing optic and the detector. A processor controls the sensor and can determine index of refraction of the fluid sample based on the detector response and scan rate. The sensor can be used in several operational environments from a laboratory to a downhole tool, such as a formation tester to determine properties in a borehole environment.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 24, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Sean M. Christian, Jess V. Ford, Bryan Statt, Thomas Blankinship, Dennis Roessler, Christopher Cotton, Bryan W. Kasperski, Margaret C. Waid
  • Patent number: 8536516
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 17, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20130020480
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Application
    Filed: April 20, 2012
    Publication date: January 24, 2013
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Patent number: 8164050
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: April 24, 2012
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20120081698
    Abstract: A refractive index sensor having one or more sources, an adaptive optical element or scanner, imaging optics, a sensing optic, and one or more detectors. The scanner impinges a signal from the source into the sensing optic and onto a sensor-sample interface at sequential angles of incidence. The detector response increases dramatically to signals reflected from the interface at corresponding sequential angles of reflection equal to or greater than a critical angle. The refractive index sensor also uses an input lens between the scanner and the sensing optic and uses an output lens between the sensing optic and the detector. A processor controls the sensor and can determine index of refraction of the fluid sample based on the detector response and scan rate. The sensor can be used in several operational environments from a laboratory to a downhole tool, such as a formation tester to determine properties in a borehole environment.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Sean M. Christian, Jess V. Ford, Bryan Statt, Thomas Blankinship, Dennis Roessler, Christopher Cotton, Bryan W. Kasperski, Margaret C. Waid
  • Publication number: 20110108719
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20110108720
    Abstract: A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20070183259
    Abstract: An acoustic borehole logging system for generation and detection of multipole modes used to determine elastic properties of earth formations characterized as inhomogeneous anisotropic solids. The system concurrently generates and senses monopole, dipole, quadrupole and any higher order pole in the borehole/formation system in order to characterize the elastic properties and stress state of material penetrated by the borehole. Multipole modes of all orders are induced simultaneously without the need for separate transmitter and receiver systems. Performance of the logging system is not compromised due to eccentering of the axis of the tool in the borehole, tool tilt with respect to the axis of the borehole, or mismatch of response sensitivity of multiple receivers within the tool.
    Type: Application
    Filed: February 6, 2006
    Publication date: August 9, 2007
    Inventors: Elan Yogeswaren, Lucio Tello, Thomas Blankinship
  • Publication number: 20070140055
    Abstract: An acoustic logging system with a borehole tool comprising a transmitter assembly and an axially spaced receiver assembly. The transmitter and receiver assemblies are optionally rotatable with respect to each other, depending upon the embodiment of the logging system. The logging system is designed to measure, among other parameters, the velocity (or slowness) and amplitude of shear wave energy induced by the transmitter assembly within formation penetrated by the borehole. These parameters are extracted from full wave acoustic data responses of receiver elements comprising the receiver assembly, and are measured as a function of azimuth around the borehole. These parameters are subsequently used to determine anisotropic properties of the formation, such as the azimuthal direction of formation fracturing with respect to the well borehole.
    Type: Application
    Filed: December 21, 2005
    Publication date: June 21, 2007
    Applicant: Precision Energy Services, Inc.
    Inventors: Lucio Tello, Thomas Blankinship, Edwin Roberts, Marek Kozak
  • Publication number: 20060262643
    Abstract: An acoustic borehole logging system for parameters of a well borehole environs. Full wave acoustic response of a scanning transducer is used to measure parameters indicative of condition of a tubular lining the well borehole, the bonding of the tubular to material filling an annulus formed by the outside surface of the tubular and the wall of the borehole, the distribution of the material filling the annulus, and thickness of the tubular. A reference transducer is used to correct measured parameters for variations in acoustic impedance of fluid filling the borehole, and for systematic variations in the response of the scanning transducer. Corrections are made in real time. The downhole tool portion of the logging system is operated essentially centralized in the borehole using a centralizer that can be adjusted for operation in a wide range of borehole sizes.
    Type: Application
    Filed: August 1, 2006
    Publication date: November 23, 2006
    Applicant: Precision Energy Services, Inc.
    Inventors: Thomas Blankinship, Edwin Roberts, Lucio Tello
  • Publication number: 20060067162
    Abstract: An acoustic borehole logging system for parameters of a well borehole environs. Full wave acoustic response of a scanning transducer is used to measure parameters indicative of condition of a tubular lining the well borehole, the bonding of the tubular to material filling an annulus formed by the outside surface of the tubular and the wall of the borehole, the distribution of the material filling the annulus, and thickness of the tubular. A reference transducer is used to correct measured parameters for variations in acoustic impedance of fluid filling the borehole, and for systematic variations in the response of the scanning transducer. Corrections are made in real time. The downhole tool portion of the logging system is operated essentially centralized in the borehole using a centralizer that can be adjusted for operation in a wide range of borehole sizes.
    Type: Application
    Filed: September 29, 2004
    Publication date: March 30, 2006
    Inventors: Thomas Blankinship, Edwin Roberts, Lucio Tello