Patents by Inventor Thomas BODNER

Thomas BODNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675049
    Abstract: A method for fabricating a plurality of Time-of-Flight sensor devices (1) comprises a step of providing a wafer (100) including a plurality of wafer portions (110) for a respective one of the Time-of-Flight sensor devices (1), wherein each of the wafer portions (110) includes a first light detecting area (10) and a second light detecting area (20) and a respective light emitter device (30). The respective light emitter device (30) and the respective first light detecting area (10) is encapsulated by a first volume (40) of a light transparent material (130), and the respective second light detecting area (20) is encapsulated by a second volume (50) of the light transparent material (130). Before singulation of the devices (1), an opaque material (60) is placed on the wafer portions (110) in a space (120) between the respective first and second volume (40, 50) of the light transparent material (130).
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: June 13, 2023
    Assignee: ams AG
    Inventors: Harald Etschmaier, Thomas Bodner
  • Publication number: 20220352016
    Abstract: A method is proposed of producing a semiconductor body with a trench. The semiconductor body comprises a substrate. The method comprising the step of etching the trench into the substrate using an etching mask. An oxide layer is formed at least on a sidewall of the trench by oxidation of the substrate. A passivation layer is formed on the oxide layer and the bottom of the trench. The passivation layer is removed from the bottom of the trench. Finally, a metallization layer is deposited into the trench.
    Type: Application
    Filed: October 23, 2020
    Publication date: November 3, 2022
    Inventors: Georg PARTEDER, Thomas BODNER
  • Patent number: 11271134
    Abstract: A method for manufacturing an optical sensor is provided. The method comprises providing an optical sensor arrangement which comprises at least two optical sensor elements on a carrier, where the optical sensor arrangement comprises a light entrance surface at the side of the optical sensor elements facing away from the carrier. The method further comprises forming a trench between two optical sensor elements in a vertical direction which is perpendicular to the main plane of extension of the carrier, where the trench extends from the light entrance surface of the sensor arrangement at least to the carrier. Moreover, the method comprises coating the trench with an opaque material, forming electrical contacts for the at least two optical sensor elements on a back side of the carrier facing away from the optical sensor elements, and forming at least one optical sensor by dicing the optical sensor arrangement along the trench.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 8, 2022
    Assignee: AMS AG
    Inventors: Gregor Toschkoff, Thomas Bodner, Franz Schrank, Miklos Labodi, Joerg Siegert, Martin Schrems
  • Publication number: 20220059434
    Abstract: An intermetal dielectric and metal layers embedded in the intermetal dielectric are arranged on a substrate of semiconductor material. A via hole is formed in the substrate, and a metallization contacting a contact area of one of the metal layers is applied in the via hole. The metallization, the metal layer comprising the contact area and the intermetal dielectric are partially removed at the bottom of the via hole in order to form a hole penetrating the intermetal dielectric and extending the via hole. A continuous passivation is arranged on sidewalls within the via hole and the hole, and the metallization contacts the contact area around the hole. Thus the presence of a thin membrane of layers, which is usually formed at the bottom of a hollow through-substrate via, is avoided.
    Type: Application
    Filed: December 20, 2019
    Publication date: February 24, 2022
    Inventors: Bernhard LOEFFLER, Thomas BODNER, Joerg SIEGERT
  • Patent number: 11139207
    Abstract: A method for manufacturing a semiconductor device comprises the steps of providing a semiconductor body with a main plane of extension, and forming a trench in the semiconductor body from a top side of the semiconductor body in a vertical direction which is perpendicular to the main plane of extension of the semiconductor body. The method further comprises the steps of coating inner walls of the trench with an isolation layer, depositing a metallization layer within the trench, and depositing a passivation layer within the trench such that an inner volume of the trench is free of any material, wherein inner surfaces that are adjacent to the inner volume are treated to be hydrophobic at least in places. Furthermore, a semiconductor device is provided.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 5, 2021
    Assignee: AMS AG
    Inventors: Thomas Bodner, Stefan Jessenig, Franz Schrank
  • Publication number: 20210216339
    Abstract: An application server provides an application to client devices. Users of the client devices interact with the application to perform a business process. Data regarding user interactions with the application is transmitted from the client devices to the application server. Based on an analysis of the received data, a bot generation server generates a bot to automate a process step. The bot generation server provides a heatmap user interface (UI) that provides information regarding the process steps. Using the heatmap UI, the administrator selects a process step for automation. In response to the selection, the bot generation server identifies, based on the observed behavior, relationships between input fields, typical values for input fields, typical order of data entry into input fields, or any suitable combination thereof. Based on the identified patterns, the bot generation server generates a bot to automate some or all of the process step.
    Type: Application
    Filed: March 9, 2021
    Publication date: July 15, 2021
    Inventors: Gregor Berg, Andre Niklas Wenz, Bernhard Hoeppner, Thomas Bodner, Olga Cherepanova, Lasse Steffen, Jan Siebert, David Hennemann, Pascal Schulze, Konstantin Dobler, Kris-Fillip Kahl, Paul Udo Beneke, Philipp Bernhard Hoberg
  • Patent number: 10977058
    Abstract: An application server provides an application to client devices. Users of the client devices interact with the application to perform a business process. Data regarding user interactions with the application is transmitted from the client devices to the application server. Based on an analysis of the received data, a bot generation server generates a bot to automate a process step. The bot generation server provides a heatmap user interface (UI) that provides information regarding the process steps. Using the heatmap UI, the administrator selects a process step for automation. In response to the selection, the bot generation server identifies, based on the observed behavior, relationships between input fields, typical values for input fields, typical order of data entry into input fields, or any suitable combination thereof. Based on the identified patterns, the bot generation server generates a bot to automate some or all of the process step.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: April 13, 2021
    Assignee: SAP SE
    Inventors: Gregor Berg, Andre Niklas Wenz, Bernhard Hoeppner, Thomas Bodner, Olga Cherepanova, Lasse Steffen, Jan Siebert, David Hennemann, Pascal Schulze, Konstantin Dobler, Kris-Fillip Kahl, Paul Udo Beneke, Philipp Bernhard Hoberg
  • Patent number: 10943936
    Abstract: A method is proposed to produce an optical sensor at wafer-level, the methods comprises the following steps. A wafer is provided and has a main top surface and a main back surface. At or near the top surface of the wafer at least one integrated circuit is arranged having a light sensitive component. A first mold tool is placed over the at least one integrated circuit such that at least one channel remains between the first mold tool and the top surface to enter a first mold material. A first mold structure is formed by wafer-level molding the first mold material via the at least one channel. The first mold material creates at least one runner structure. A second mold tool is placed over the first mold structure and a second mold structure is formed by wafer-level molding a second mold material by means of the second mold tool. A light path blocking structure is arranged on the top surface to block light from entering via the at least one runner structure.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 9, 2021
    Assignee: AMS AG
    Inventors: Gregor Toschkoff, Thomas Bodner, Franz Schrank
  • Publication number: 20200401430
    Abstract: An application server provides an application to client devices. Users of the client devices interact with the application to perform a business process. Data regarding user interactions with the application is transmitted from the client devices to the application server. Based on an analysis of the received data, a bot generation server generates a bot to automate a process step. The bot generation server provides a heatmap user interface (UI) that provides information regarding the process steps. Using the heatmap UI, the administrator selects a process step for automation. In response to the selection, the bot generation server identifies, based on the observed behavior, relationships between input fields, typical values for input fields, typical order of data entry into input fields, or any suitable combination thereof. Based on the identified patterns, the bot generation server generates a bot to automate some or all of the process step.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 24, 2020
    Inventors: Gregor Berg, Andre Niklas Wenz, Bernhard Hoeppner, Thomas Bodner, Olga Cherepanova, Lasse Steffen, Jan Siebert, David Hennemann, Pascal Schulze, Konstantin Dobler, Kris-Fillip Kahl, Paul Udo Beneke, Philipp Bernhard Hoberg
  • Patent number: 10847664
    Abstract: An optical package is proposed comprising a carrier, an optoelectronic component, an aspheric lens, and a reflective layer. The carrier comprises electrical interconnections and the optoelectric component is arranged for emitting and/or detecting electromagnetic radiation in a specified wavelength range. Furthermore, the optoelectric component is mounted on the carrier or integrated into the carrier and electrically connected to the electric interconnections. The aspheric lens has an upper surface, a lateral surface, and a bottom surface and the bottom surface is arranged on or near the optoelectric component. The aspheric lens comprises a material which is at least transparent in the specified wavelength range. The reflective layer comprises a reflective material, wherein the reflective layer at least partly covers the lateral surface of the aspheric lens, and wherein the reflective material is at least partly reflective in the specified wavelength range.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: November 24, 2020
    Assignee: AMS AG
    Inventors: David Mehrl, Thomas Bodner, Gregor Toschkoff, Harald Etschmaier, Franz Schrank
  • Publication number: 20200333442
    Abstract: A method for fabricating a plurality of Time-of-Flight sensor devices (1) comprises a step of providing a wafer (100) including a plurality of wafer portions (110) for a respective one of the Time-of-Flight sensor devices (1), wherein each of the wafer portions (110) includes a first light detecting area (10) and a second light detecting area (20) and a respective light emitter device (30). The respective light emitter device (30) and the respective first light detecting area (10) is encapsulated by a first volume (40) of a light transparent material (130), and the respective second light detecting area (20) is encapsulated by a second volume (50) of the light transparent material (130). Before singulation of the devices (1), an opaque material (60) is placed on the wafer portions (110) in a space (120) between the respective first and second volume (40, 50) of the light transparent material (130).
    Type: Application
    Filed: October 10, 2018
    Publication date: October 22, 2020
    Inventors: Harald ETSCHMAIER, Thomas BODNER
  • Publication number: 20200313031
    Abstract: A method for manufacturing an optical sensor is provided. The method comprises providing an optical sensor arrangement which comprises at least two optical sensor elements on a carrier, where the optical sensor arrangement comprises a light entrance surface at the side of the optical sensor elements facing away from the carrier. The method further comprises forming a trench between two optical sensor elements in a vertical direction which is perpendicular to the main plane of extension of the carrier, where the trench extends from the light entrance surface of the sensor arrangement at least to the carrier. Moreover, the method comprises coating the trench with an opaque material, forming electrical contacts for the at least two optical sensor elements on a back side of the carrier facing away from the optical sensor elements, and forming at least one optical sensor by dicing the optical sensor arrangement along the trench.
    Type: Application
    Filed: October 15, 2018
    Publication date: October 1, 2020
    Inventors: Gregor TOSCHKOFF, Thomas BODNER, Franz SCHRANK, Miklos LABODI, Joerg SIEGERT, Martin SCHREMS
  • Patent number: 10734534
    Abstract: A method of producing an optical sensor at wafer-level, comprising the steps of providing a wafer having a main top surface and a main back surface and arrange at or near the top surface of the wafer at least one first integrated circuit having at least one light sensitive component. Furthermore, providing in the wafer at least one through-substrate via for electrically contacting the top surface and back surface and forming a first mold structure by wafer-level molding a first mold material over the top surface of the wafer, such that the first mold structure at least partly encloses the first integrated circuit. Finally, forming a second mold structure by wafer-level molding a second mold material over the first mold structure, such that the second mold structure at least partly encloses the first mold structure.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 4, 2020
    Assignee: ams AG
    Inventors: Harald Etschmaier, Gregor Toschkoff, Thomas Bodner, Franz Schrank
  • Publication number: 20200243387
    Abstract: A method for manufacturing a semiconductor device comprises the steps of providing a semiconductor body with a main plane of extension, and forming a trench in the semiconductor body from a top side of the semiconductor body in a vertical direction which is perpendicular to the main plane of extension of the semiconductor body. The method further comprises the steps of coating inner walls of the trench with an isolation layer, depositing a metallization layer within the trench, and depositing a passivation layer within the trench such that an inner volume of the trench is free of any material, wherein inner surfaces that are adjacent to the inner volume are treated to be hydrophobic at least in places. Furthermore, a semiconductor device is provided.
    Type: Application
    Filed: October 11, 2018
    Publication date: July 30, 2020
    Inventors: Thomas BODNER, Stefan JESSENIG, Franz SCHRANK
  • Publication number: 20190237500
    Abstract: A 3D-Integrated optical sensor comprises a semiconductor substrate, an integrated circuit, a wiring, a filter layer, a transparent spacer layer, and an on-chip diffuser. The semiconductor substrate has a main surface. The integrated circuit comprises at least one light sensitive area and is arranged in the substrate at or near the main surface. The wiring provides an electrical connection to the integrated circuit and is connected to the integrated circuit. The wiring is arranged on or in the semiconductor substrate. The filter layer has a direction dependent transmission characteristic and is arranged on the integrated circuit. In fact, the filter layer at least covers the light sensitive area. The transparent spacer layer is arranged on the main surface and, at least partly, encloses the filter layer. A spacer thickness is arranged to limit a spectral shift of the filter layer. The on-chip diffuser is arranged on the transparent spacer layer.
    Type: Application
    Filed: June 2, 2017
    Publication date: August 1, 2019
    Inventors: Hubert Enichlmair, Martin SCHREMS, Gregor Toschkoff, Thomas Bodner, Mario Manninger
  • Patent number: 10346387
    Abstract: A method includes a primary storage unit receiving a first write request including a first key and a first value; persisting the first value in a first non-volatile memory in association with the first key; broadcasting the first write request and a first set of globally-durable keys to secondary storage units; receiving, from the secondary storage units, an acknowledgement of the first write request and a first set of locally-durable keys, each of the first sets of locally-durable keys including the first key; the primary storage unit receiving a second write request including a second key and a second value; persisting the second value in the first non-volatile memory in association with the second key; and broadcasting the second write request and a second set of globally-durable keys to the secondary storage units, the second set of locally-durable keys including the first key. A system is also disclosed.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 9, 2019
    Assignee: SAP SE
    Inventors: Peter Bumbulis, Jeffrey Pound, Nathan Auch, Anil Kumar Goel, Matthias Ringwald, Thomas Bodner, Scott MacLean
  • Publication number: 20190165020
    Abstract: A method is proposed to produce an optical sensor at wafer-level, the methods comprises the following steps. A wafer is provided and has a main top surface and a main back surface. At or near the top surface of the wafer at least one integrated circuit is arranged having a light sensitive component. A first mold tool is placed over the at least one integrated circuit such that at least one channel remains between the first mold tool and the top surface to enter a first mold material. A first mold structure is formed by wafer-level molding the first mold material via the at least one channel. The first mold material creates at least one runner structure. A second mold tool is placed over the first mold structure and a second mold structure is formed by wafer-level molding a second mold material by means of the second mold tool. A light path blocking structure is arranged on the top surface to block light from entering via the at least one runner structure.
    Type: Application
    Filed: August 8, 2017
    Publication date: May 30, 2019
    Inventors: Gregor Toschkoff, Thomas Bodner, Franz Schrank
  • Publication number: 20180323320
    Abstract: An optical package is proposed comprising a carrier, an optoelectronic component, an aspheric lens, and a reflective layer. The carrier comprises electrical interconnections and the optoelectric component is arranged for emitting and/or detecting electromagnetic radiation in a specified wavelength range. Furthermore, the optoelectric component is mounted on the carrier or integrated into the carrier and electrically connected to the electric interconnections. The aspheric lens has an upper surface, a lateral surface, and a bottom surface and the bottom surface is arranged on or near the optoelectric component. The aspheric lens comprises a material which is at least transparent in the specified wavelength range. The reflective layer comprises a reflective material, wherein the reflective layer at least partly covers the lateral surface of the aspheric lens, and wherein the reflective material is at least partly reflective in the specified wavelength range.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 8, 2018
    Applicant: ams AG
    Inventors: David MEHRL, Thomas BODNER, Gregor TOSCHKOFF, Harald ETSCHMAIER, Franz SCHRANK
  • Publication number: 20180226514
    Abstract: A method of producing an optical sensor at wafer-level, comprising the steps of providing a wafer having a main top surface and a main back surface and arrange at or near the top surface of the wafer at least one first integrated circuit having at least one light sensitive component. Furthermore, providing in the wafer at least one through-substrate via for electrically contacting the top surface and back surface and forming a first mold structure by wafer-level molding a first mold material over the top surface of the wafer, such that the first mold structure at least partly encloses the first integrated circuit. Finally, forming a second mold structure by wafer-level molding a second mold material over the first mold structure, such that the second mold structure at least partly encloses the first mold structure.
    Type: Application
    Filed: July 22, 2016
    Publication date: August 9, 2018
    Inventors: Harald ETSCHMAIER, Gregor TOSCHKOFF, Thomas BODNER, Franz SCHRANK
  • Patent number: 9991177
    Abstract: According to the improved concept, a method for analyzing a semiconductor element comprising polymer residues located on a surface of the semiconductor element is provided. The method comprises marking at least a fraction of the residues by exposing the semiconductor element to a fluorescent substance and detecting the marked residues by visualizing the marked residues on the surface of the semiconductor element using fluorescence microscopy.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 5, 2018
    Assignee: ams AG
    Inventors: Helene Gehles, Thomas Bodner, Joerg Siegert