Patents by Inventor Thomas Boone

Thomas Boone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230200089
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a semiconductor comprises: a first device at a first semiconductor level within a multi terminal device stack; wherein the first device is coupled to a first terminal; a second device at a second semiconductor level within the multi terminal device stack, wherein the second device is coupled to a second terminal; a third terminal is coupled to the second device and a fourth terminal is coupled to the first device, wherein the first terminal and second terminal are independently coupled to the first device and second device respectively. The first terminal, the second terminal, the third terminal and the fourth terminal couple components included in the multi terminal stack to components not included in the multi terminal stack.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 22, 2023
    Inventors: Thomas BOONE, Pradeep Adam MANANDHAR, Girish Anthony JAGTINI, Yuan-Tung D. CHIN, Elizabeth DOBISZ, Mustafa Pinarbasi
  • Patent number: 11626559
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a multi terminal fabrication process comprises: performing an initial pillar layer formation process to create layers of a multi terminal stack; forming a first device in the layers of the multi terminal stack; forming a second device in the layers of the multi terminal stack; and constructing a set of terminals comprising: a first terminal coupled to the first device, a second terminal coupled to the second device; and a third terminal coupled to the first device; wherein at least two terminals in the set of terminals are independent. The third terminal can be coupled to the second device.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: April 11, 2023
    Assignee: Integrated Silicon Solution, (Cayman) Inc.
    Inventors: Thomas Boone, Pradeep Manandhar, Girish Jagtini, Yuan-Tung Chin, Elizabeth Dobisz, Mustafa Pinarbasi
  • Patent number: 11621293
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a semiconductor comprises: a first device at a first semiconductor level within a multi terminal device stack; wherein the first device is coupled to a first terminal; a second device at a second semiconductor level within the multi terminal device stack, wherein the second device is coupled to a second terminal; and a third terminal is coupled to the first device, wherein the first terminal and second terminal are independently coupled to the first device and second device respectively. The third terminal can be coupled to the second device. The first terminal, the second terminal, and third terminal and couple components included in the multi terminal stack to components not included in the multi terminal stack.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 4, 2023
    Assignee: Integrated Silicon Solution, (Cayman) Inc.
    Inventors: Thomas Boone, Pradeep Manandhar, Girish Jagtini, Yuan-Tung Chin, Elizabeth Dobisz, Mustafa Pinarbasi
  • Publication number: 20210399213
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a multi terminal fabrication process comprises: performing an initial pillar layer formation process to create layers of a multi terminal stack; forming a first device in the layers of the multi terminal stack; forming a second device in the layers of the multi terminal stack; and constructing a set of terminals comprising: a first terminal coupled to the first device, a second terminal coupled to the second device; and a third terminal coupled to the first device; wherein at least two terminals in the set of terminals are independent. The third terminal can be coupled to the second device.
    Type: Application
    Filed: April 6, 2021
    Publication date: December 23, 2021
    Inventors: Thomas BOONE, Pradeep MANANDHAR, Girish JAGTINI, Yuan-Tung CHIN, Elizabeth DOBISZ, Mustafa PINARBASI
  • Patent number: 10971680
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a multi terminal fabrication process comprises: performing an initial pillar layer formation process to create layers of a multi terminal stack; forming a first device in the layers of the multi terminal stack; forming a second device in the layers of the multi terminal stack; and constructing a set of terminals comprising: a first terminal coupled to the first device, a second terminal coupled to the second device; and a third terminal coupled to the first device; wherein at least two terminals in the set of terminals are independent. The third terminal can be coupled to the second device.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 6, 2021
    Assignee: Spin Memory, Inc.
    Inventors: Thomas Boone, Pradeep Manandhar, Girish Jagtini, Yuan-Tung Chin, Elizabeth Dobisz, Mustafa Pinarbasi
  • Patent number: 10886330
    Abstract: Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, a semiconductor device comprises: a first pillar magnetic tunnel junction (pMTJ) memory cell that comprises a first pMTJ located in a first level in the semiconductor device; and a second pillar magnetic tunnel junction (pMTJ) memory cell that comprises a second pMTJ located in a second level in the semiconductor device, wherein the second pMTJ location with respect to the first pMTJ is coordinated to comply with a reference pitch for the memory cell. A reference pitch is associated a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The first switch and second switch can be transistors. The reference pitch coordination facilitates reduced pitch between memory cells and increased information storage capacity of bits per memory device area.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 5, 2021
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Pinarbasi, Thomas Boone, Pirachi Shrivastava, Pradeep Manandhar
  • Patent number: 10840439
    Abstract: Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, the method comprises: forming a first pitch reference component and a second pitch reference component; forming a first pillar magnetic tunnel junction (pMTJ) located in a first level and a second pMTJ located in a second level, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and first pitch reference component. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The reference component size can be based upon a minimum lithographic processing dimension.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: November 17, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Mustafa Pinarbasi, Thomas Boone, Pirachi Shrivastava, Pradeep Manandhar
  • Patent number: 10615337
    Abstract: A method for a photo and/or electron beam lithographic fabricating processes for producing a pillar array test device. The method includes receiving a wafer having a plurality of bit cells arranged in a grid and etching a plurality of bottom electrode traces to connect a plurality of bottom electrode pads in a centrally located bit cell to each of the bit cells in the grid. The method further includes fabricating an array of magnetic tunnel junction pillars onto each respective pad in the centrally located bit cell. The wafer is then planarized. The method further includes etching a plurality of top electrode traces to connect the plurality of magnetic tunnel junction pillars to each of the bit cells in the grid, and outputting the wafer for subsequent testing.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 7, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Pradeep Manandhar, Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Publication number: 20200105829
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a semiconductor comprises: a first device at a first semiconductor level within a multi terminal device stack; wherein the first device is coupled to a first terminal; a second device at a second semiconductor level within the multi terminal device stack, wherein the second device is coupled to a second terminal; and a third terminal is coupled to the first device, wherein the first terminal and second terminal are independently coupled to the first device and second device respectively. The third terminal can be coupled to the second device. The first terminal, the second terminal, and third terminal and couple components included in the multi terminal stack to components not included in the multi terminal stack.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 2, 2020
    Inventors: Thomas BOONE, Pradeep MANANDHAR, Girish JAGTINI, Yuan-Tung CHIN, Elizabeth DOBISZ, Mustafa PINARBASI
  • Publication number: 20200106006
    Abstract: Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a multi terminal fabrication process comprises: performing an initial pillar layer formation process to create layers of a multi terminal stack; forming a first device in the layers of the multi terminal stack; forming a second device in the layers of the multi terminal stack; and constructing a set of terminals comprising: a first terminal coupled to the first device, a second terminal coupled to the second device; and a third terminal coupled to the first device; wherein at least two terminals in the set of terminals are independent. The third terminal can be coupled to the second device.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 2, 2020
    Inventors: Thomas BOONE, Pradeep MANANDHAR, Girish JAGTINI, Yuan-Tung CHIN, Elizabeth DOBISZ, Mustafa PINARBASI
  • Patent number: 10516094
    Abstract: A method for a photolithographic fabricating process to define pillars having small pitch and pillar size. The method includes coating a hard mask layer of a wafer with a photoresist. The wafer is exposed with a first line pattern comprising a plurality of parallel lines in a first direction. The wafer is then exposed with a second line pattern comprising a plurality of parallel lines in a second direction orthogonal to the first direction. The wafer is then developed to remove areas of the photoresist that were exposed by the first line pattern and the second line pattern resulting in a plurality of pillars.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 24, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Publication number: 20190371997
    Abstract: A method for a photo and/or electron beam lithographic fabricating processes for producing a pillar array test device. The method includes receiving a wafer having a plurality of bit cells arranged in a grid and etching a plurality of bottom electrode traces to connect a plurality of bottom electrode pads in a centrally located bit cell to each of the bit cells in the grid. The method further includes fabricating an array of magnetic tunnel junction pillars onto each respective pad in the centrally located bit cell. The wafer is then planarized. The method further includes etching a plurality of top electrode traces to connect the plurality of magnetic tunnel junction pillars to each of the bit cells in the grid, and outputting the wafer for subsequent testing.
    Type: Application
    Filed: April 18, 2019
    Publication date: December 5, 2019
    Inventors: Pradeep Manandhar, Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Patent number: 10424723
    Abstract: A Magnetic Tunnel Junction (MTJ) device including pillar contacts coupling the free magnetic layer of cell pillars to a top contact. The pillar contacts are electrically isolated from one or more other portions of the cell pillar by one or more self-aligned sidewall insulators. The MTJ device further including one of a static magnetic compensation layer or an exchange spring layer in the cell pillar.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: September 24, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Thomas Boone, Pradeep Manandhar, Manfred Schabes, Bartlomiej Kardasz, Mustafa Pinarbasi
  • Patent number: 10411185
    Abstract: A method for a photo and/or electron beam lithographic fabricating processes for producing a pillar array test device. The method includes receiving a wafer having a plurality of bit cells arranged in a grid and etching a plurality of bottom electrode traces to connect a plurality of bottom electrode pads in a centrally located bit cell to each of the bit cells in the grid. The method further includes fabricating an array of magnetic tunnel junction pillars onto each respective pad in the centrally located bit cell. The wafer is then planarized. The method further includes etching a plurality of top electrode traces to connect the plurality of magnetic tunnel junction pillars to each of the bit cells in the grid, and outputting the wafer for subsequent testing.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 10, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Pradeep Manandhar, Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Patent number: 10367139
    Abstract: A method of manufacturing a Magnetic Tunnel Junction (MTJ) device including pillar contacts coupling the free magnetic layer of MTJ pillars to a top contact. The pillar contacts are electrically isolated from one or more other portions of the MTJ pillar by one or more self-aligned sidewall insulators. The MTJ device further including one of a static magnetic compensation layer or an exchange spring layer in the MTJ pillar.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 30, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Thomas Boone, Pradeep Manandhar, Manfred Schabes, Bartlomiej Kardasz, Mustafa Pinarbasi
  • Publication number: 20190207103
    Abstract: Embodiments of the present invention facilitate efficient and effective increased memory cell density configuration. In one embodiment, the method comprises: forming a first pitch reference component and a second pitch reference component; forming a first pillar magnetic tunnel junction (pMTJ) located in a first level and a second pMTJ located in a second level, wherein the location of the second pMTJ with respect to the first pMTJ is coordinated based upon a reference pitch distance between the first pitch reference component and first pitch reference component. In one exemplary implementation, the first pitch reference component is a first switch coupled to the first pMTJ and the second pitch reference component is a second switch coupled to the second pMTJ. The reference component size can be based upon a minimum lithographic processing dimension.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Mustafa PINARBASI, Thomas BOONE, Pirachi SHRIVASTAVA, Pradeep MANANDHAR
  • Publication number: 20190207082
    Abstract: A method for a photolithographic fabricating process to define pillars having small pitch and pillar size. The method includes coating a hard mask layer of a wafer with a photoresist. The wafer is exposed with a first line pattern comprising a plurality of parallel lines in a first direction. The wafer is then exposed with a second line pattern comprising a plurality of parallel lines in a second direction orthogonal to the first direction. The wafer is then developed to remove areas of the photoresist that were exposed by the first line pattern and the second line pattern resulting in a plurality of pillars.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Publication number: 20190207101
    Abstract: A method for fabricating an array of pillars. The method includes fabricating a plurality of lines of photoresist on a hard mask stack and depositing a spacer film on top of the plurality of lines of photoresist. The method further includes etching the spacer film to remove the spacer film from the top of the plurality of lines of photoresist and stripping the plurality of lines of photoresist to leave behind to spacer lines for each resist line. The method concludes with etching the spacer lines and the hard mask stack to yield an array of pillars.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Prachi Shrivastava, Yuan Tung Chin, Thomas Boone, Mustafa Pinarbasi
  • Publication number: 20190207105
    Abstract: A method of manufacturing a Magnetic Tunnel Junction (MTJ) device including pillar contacts coupling the free magnetic layer of MTJ pillars to a top contact. The pillar contacts are electrically isolated from one or more other portions of the MTJ pillar by one or more self-aligned sidewall insulators. The MTJ device further including one of a static magnetic compensation layer or an exchange spring layer in the MTJ pillar.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Thomas Boone, Pradeep Manandhar, Manfred Schabes, Bartlomiej Kardasz, Mustafa Pinarbasi
  • Publication number: 20190207087
    Abstract: A Magnetic Tunnel Junction (MTJ) device including pillar contacts coupling the free magnetic layer of cell pillars to a top contact. The pillar contacts are electrically isolated from one or more other portions of the cell pillar by one or more self-aligned sidewall insulators. The MTJ device further including one of a static magnetic compensation layer or an exchange spring layer in the cell pillar.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Thomas BOONE, Pradeep MANANDHAR, Manfred SCHABES, Bartlomiej KARDASZ, Mustafa PINARBASI