Patents by Inventor Thomas Bruno

Thomas Bruno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9165318
    Abstract: Described are methods and systems of providing an augmented experience on a user device to facilitate user interaction with one or more virtual items. An augmented image comprising an actual object and a virtual item is generated and presented in a user interface. The user interface allows the user to lock a relative position of the virtual item as presented, such that the user may appear to “move” the virtual item. The user interface may also provide sizing information of the virtual item relative item to the actual object.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: October 20, 2015
    Assignee: Amazon Technologies, Inc.
    Inventors: Devin Bertrum Pauley, Connor Spencer Blue Worley, Edward Albert Liljegren, Peter A. Larsen, Jung Sik Yang, Thomas Bruno Mader
  • Publication number: 20150242933
    Abstract: In some cases, a handheld electronic device may operate in a voice input mode or a scanner input mode. When operating in the voice input mode, the handheld electronic device may record and store audio data in memory. In some cases, the stored audio data may be communicated from the handheld electronic device (e.g., via a Wi-Fi connection) to one or more remote computing devices (e.g., for speech processing). When operating in the scanner input mode, the handheld electronic device may record and store item identifier information (e.g., as barcode data) in the memory. In some cases, the stored item identifier data may be communicated to the one or more remote computing devices (e.g., for item identification processing).
    Type: Application
    Filed: February 26, 2014
    Publication date: August 27, 2015
    Applicant: Amazon Technologies, Inc.
    Inventors: Julien George Beguin, John Mathew Depew, Richard David Young, David George Butler, Thomas William Keen, John Avery Howard, Thomas Bruno Mader, Toni Raquel Reid Thomelin
  • Patent number: 8470097
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?,and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A Greaney, Thomas Bruno, Ian A Cody, Trikur A Ramanarayanan, LeRoy A Clavenna
  • Patent number: 8469081
    Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer having a surface roughness of less than 40 micro inches (1.1 ?m) and a protective layer formed thereon.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mark A Greaney, Thomas Bruno, Ashley E. Cooper, Ian A Cody, ChangMin Chun
  • Patent number: 8465599
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance for a heat transfer component is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 18, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan
  • Publication number: 20120273091
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and t, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and t is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 1, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan, LeRoy R. Clavenna
  • Patent number: 8286695
    Abstract: An insert for reducing sulfidation corrosion and depositional fouling is disclosed. The insert is formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 16, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Mark A. Greaney, James E. Feather, Thomas Bruno, ChangMin Chun, Clifford Hay
  • Publication number: 20120246935
    Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer having a surface roughness of less than 40 micro inches (1.1 ?m) and a protective layer formed thereon.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 4, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mark A. GREANEY, Thomas BRUNO, Ashley E. COOPER, Ian A. CODY, ChangMin CHUN
  • Patent number: 8211548
    Abstract: A heat transfer component that is resistant to both corrosion and fouling is disclosed having a heat exchange surface formed from a silicon containing steel composition including an alloy and a non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The non-metallic film comprises sulfide, oxide, carbide, nitride, oxysulfide, oxycarbide, oxynitride and mixtures thereof. The surface roughness of the heat transfer component is less than 40 micro inches.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan, LeRoy R. Clavenna
  • Patent number: 8201619
    Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 19, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Mark A. Greaney, Thomas Bruno, Ashley E. Cooper, Ian A. Cody, ChangMin Chun
  • Publication number: 20110277888
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance for a heat transfer component is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin CHUN, Mark A. GREANEY, Thomas BRUNO, Ian A. CODY, Trikur A. RAMANARAYANAN
  • Patent number: 8037928
    Abstract: A heat transfer component that is resistant to corrosion and fouling is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof. The metal M of the chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) may comprise Fe, Cr, and constituting elements of the steel ?.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan
  • Patent number: 7991028
    Abstract: A high-powered diffraction limited diode pumped solid-state source optically end pumps a compact, widely tunable solid state material. Imaging of the collimated pump beam into the tunable medium produces ideal volumetric overlap producing high conversion efficiencies. Fully integrated pump source provides pump energy at or near the peak absorption wavelength. Birefringent elements placed intracavity are used for linewidth narrowing and tuning of the laser wavelength. Tunable active medium is placed in linear cavity arrangement utilizing a confocal or hemispherical arrangement. Mode waist is minimized in crystal such that there is optimal overlap with pump source while simultaneously maximizing extraction efficiency.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 2, 2011
    Inventor: Thomas Bruno
  • Publication number: 20100018312
    Abstract: A method and apparatus for the remote detection of non-conductive pipes is described. The system consists of transmitter (Tx) and receiver (Rx) units. The transmitter unit induces mechanical vibrations into the pipe, and generates a reference signal which is relayed to the receiver. The receiver unit senses vibrations from the ground and converts the vibrations into an electrical signal, and receives the reference signal from the transmitter. Using synchronous detection, the receiver compares the reference signal to the received signal from the ground. The output of the receiver is proportional to the strength of the signal from the ground and therefore indicates the proximity of the receiver to the underground pipe.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 28, 2010
    Inventors: Peter Eugene Kirkpatrick, Thomas Bruno Mader
  • Publication number: 20090215857
    Abstract: The present invention provides for compounds of Formula (I), and pharmaceutically acceptable salts thereof, wherein A, J, Z, and R20 have any of the values defined therefore in the specification, and pharmaceutically acceptable salts thereof, that are useful as agents in the treatment of disorders and conditions including attention deficit hyperactivity disorder, neuropathic pain, urinary incontinence, generalized anxiety disorder, depression, schizophrenia, and fibromyalgia. Also provided are pharmaceutical compositions comprising one or more compounds of Formula (I) or pharmaceutically acceptable salts thereof.
    Type: Application
    Filed: August 29, 2006
    Publication date: August 27, 2009
    Applicant: Pfizer Products Inc.
    Inventors: Thomas Bruno Lanni, Scott Edward Lazerwith, Susan Mary Kult Sheehan, Anthony Jerome Thomas
  • Publication number: 20070207329
    Abstract: A heat transfer component that is resistant to corrosion and fouling is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof. The metal M of the chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) may comprise Fe, Cr, and constituting elements of the steel ?.
    Type: Application
    Filed: December 20, 2006
    Publication date: September 6, 2007
    Inventors: ChangMin Chun, Mark Greaney, Thomas Bruno, Ian Cody, Trikur Ramanarayanan
  • Publication number: 20070187078
    Abstract: An insert for reducing sulfidation corrosion and depositional fouling is disclosed. The insert is formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Application
    Filed: December 20, 2006
    Publication date: August 16, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Mark Greaney, James Feather, Thomas Bruno, ChangMin Chun, Clifford Hay
  • Publication number: 20070178322
    Abstract: A heat transfer component that is resistant to both corrosion and fouling is disclosed having a heat exchange surface formed from a silicon containing steel composition including an alloy and a non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, 0, S and mixtures thereof. The non-metallic film comprises sulfide, oxide, carbide, nitride, oxysulfide, oxycarbide, oxynitride and mixtures thereof. The surface roughness of the heat transfer component is less than 40 micro inches.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 2, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark Greaney, Thomas Bruno, Ian Cody, Trikur Ramanarayanan, LeRoy Clavenna
  • Publication number: 20070158054
    Abstract: A method and device for reducing sulfidation corrosion and depositional fouling in heat transfer components within a refining or petrochemical facility is disclosed. The heat transfer components are formed from a corrosion and fouling resistant steel composition containing a Cr-enriched layer and having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Application
    Filed: December 20, 2006
    Publication date: July 12, 2007
    Inventors: Mark Greaney, Thomas Bruno, Ashley Cooper, Ian Cody, ChangMin Chun
  • Publication number: 20070144631
    Abstract: A method and apparatus for reducing fouling associated with a process stream in a heat transfer component. The method and apparatus include the use of one of a vibration producing device to impart a vibrational force to desired component and a pulsation producing device for apply pressure pulsations to the process stream. The heat transfer component has at least one surface having a surface roughness of less than 40 micro inches (1.1 ?m).
    Type: Application
    Filed: December 20, 2006
    Publication date: June 28, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: LeRoy Clavenna, Ian Cody, Ashley Cooper, Steve Colgrove, Mark Greaney, Thomas Bruno, Limin Song, H. Wolf, Glen Brons, ChangMin Chun, Mohsen Yeganeh