Patents by Inventor Thomas Budinger

Thomas Budinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7385395
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: June 10, 2008
    Assignee: Lawrence Berkeley National Laboratory
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Publication number: 20080024130
    Abstract: Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotated the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
    Type: Application
    Filed: April 26, 2007
    Publication date: January 31, 2008
    Inventors: Ross Schlueter, Thomas Budinger
  • Publication number: 20060264755
    Abstract: A “relaxoscope” (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxafion. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.
    Type: Application
    Filed: February 23, 2006
    Publication date: November 23, 2006
    Inventors: Jonathan Maltz, Thomas Budinger
  • Publication number: 20050030026
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 10, 2005
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Patent number: 6818202
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: November 16, 2004
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Publication number: 20030017110
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: June 5, 2002
    Publication date: January 23, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Patent number: 6426058
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: July 30, 2002
    Assignee: The Regents of the University of California
    Inventors: Alexander Pines, Thomas Budinger, Gil Navon, Yi-Qiao Song, Stephan Appelt, Angelo Bifone, Rebecca Taylor, Boyd Goodson, Roberto Seydoux, Toomas Room, Tanja Pietrass
  • Publication number: 20020094317
    Abstract: The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
    Type: Application
    Filed: March 28, 1997
    Publication date: July 18, 2002
    Inventors: ALEXANDER PINES, THOMAS BUDINGER, GIL NAVON, YI-QIAO SONG, STEPHAN APPELT, ANGELO BIFONE, REBECCA TAYLOR, BOYD GOODSON, ROBERTO SEYDOUX, TOOMAS ROOM, TANJA PIETRASS