Patents by Inventor Thomas Buesgen

Thomas Buesgen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10974498
    Abstract: A process for manufacturing an article, comprising the step of manufacturing the article via an additive fabrication process from a structural material, is notable in that the structural material comprises a polymer selected from the following group: (co)polycarbonates, polyesters, polyestercarbonates, polyformals, polyamides, polyethers, polyvinyl chloride, polymethyl (meth)acrylate, polystyrene or a combination of at least two thereof and an additive absorbing infrared radiation. The additive absorbing infrared radiation is selected for its chemical structure and its concentration in the structural material such that it reduces transmission by the structural material of light in the wavelength range between 600 nm and 1700 nm, determined on a sample 100 ?m thick, by ?2.5 percentage points relative to a structural material sample with a thickness of 100 ?m that does not contain the additive absorbing infrared radiation.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 13, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Thomas Büsgen, Rolf Wehrmann, Helmut Werner Heuer
  • Publication number: 20210087324
    Abstract: The invention relates to a method for producing an object from a construction material, the construction material comprising radically crosslinkable groups, NCO groups and groups having Zerewitinoff active H atoms, and the object being a three-dimensional object and/or a layer. During and/or after the production of the object, the construction material is heated to a temperature of >50° C.
    Type: Application
    Filed: March 26, 2018
    Publication date: March 25, 2021
    Inventors: Dirk ACHTEN, Thomas BÜSGEN, Christoph TOMCZYK, Jan WEIKARD, Frank RICHTER, Roland WAGNER
  • Publication number: 20210054125
    Abstract: The invention relates to a method for producing an object from a precursor, comprising the steps: I) depositing a radically cross-linked resin on a carrier so that a layer of a construction material connected to the carrier is obtained, said layer corresponding to a first selected cross-section of the precursor; II) depositing a radically cross-linked resin on a previously applied layer of the construction material so that an additional layer of the construction material is obtained, which corresponds to a further selected cross-section of the precursor and which is connected to the previously applied layer; III) repeating step II) until the precursor is formed, wherein, at least in step II), the deposition of a radically cross-linked resin is carried out by allowing energy to act on a selected region of a radically cross-linkable resin, corresponding to the respectively selected cross-section of the object, wherein the radically cross-linkable resin has a viscosity (23° C.
    Type: Application
    Filed: December 4, 2017
    Publication date: February 25, 2021
    Inventors: Dirk Achten, Thomas BÜSGEN, Florian GOLLING, Roland WAGNER, Christoph TOMCZYK, Jörge TILLACK, Christoph EGGERT, Hans-Josef LAAS, Florian STEMPFLE
  • Patent number: 10926459
    Abstract: A process for manufacturing an article comprises the steps of: applying a layer that consists of particles to a target area; allowing, in a chamber, energy to act on a selected portion of the layer, according to a cross-section of the article, so that the particles in the selected portion are bonded, and repeating the steps of applying and allowing energy to act for a plurality of layers so that the bonded portions of the adjacent layers are bonded to form the article, at least part of the particles comprising a fusible polymer. The fusible polymer has a fusion range (DSC, differential scanning calorimetry; 2nd heating at a heating rate of 5 K/min.) of ?20° C. to ?100° C. The fusible polymer further has a complex viscosity \?*\ (determined by viscosity measurement in the melt using a plate-plate oscillating viscometer according to ISO 6721-10 at 100° C. and a shear rate of 1/s) of ?10 Pas to ?1000000 Pas. Finally, the temperature inside the chamber is ?50° C.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: February 23, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Thomas Büsgen, Dirk Dijkstra, Nicolas Degiorgio, Wolfgang Arndt, Levent Akbas, Roland Wagner, Peter Reichert, Jörg Büchner
  • Publication number: 20210046696
    Abstract: A process for manufacturing an object involves the steps of: I) depositing a radically cross-linked resin on a carrier so that a layer of a structuring material joined to the carrier is obtained, said layer corresponding to a first selected cross-section of the object; II) depositing a radically cross-linked resin on a previously applied layer of the structuring material so that an additional layer of the structuring material is obtained which corresponds to a further selected cross-section of the object and which is joined to the previously applied layer; III) repeating step II) until the object is formed, wherein the deposition of a radically cross-linked resin in steps I) and II) includes the application of a radically cross-linkable resin to the carrier or the previously applied layer and is performed at least in step II) by applying energy to a selected region of a radically cross-linkable resin, corresponding to the selected cross-section of the object, the radically cross-linkable resin having a viscos
    Type: Application
    Filed: November 8, 2018
    Publication date: February 18, 2021
    Inventors: Dirk Achten, Thomas Buesgen, Roland Wagner, Florian Stempfle, Michael Ludewig, Christoph Tomczyk
  • Publication number: 20210031435
    Abstract: The invention relates to a method for applying a material containing a meltable polymer comprising the step of applying a filament of the at least partially molten material from a discharge opening of a discharge element onto a substrate. The meltable polymer has the following properties: —a melting point (DSC, differential scanning calorimetry; second heating with a heating rate of 5° C./min) in a range from ?40° C. to ?120° C.; —a glass transition temperature (DMA, dynamic mechanical analysis in accordance with DIN EN ISO 6721-1:2011) in a range from ??70° C. to ?30° C.; —a storage modulus G? (parallel plate oscillation viscometer in accordance with ISO 6721-10:2015 at a frequency of 1/s) at 20° C. above the melting point of ?1·104 Pa?—a storage modulus G? (parallel plate oscillation viscometer in accordance with ISO 6721-10:2015 at a frequency of 1/s) at 10° C. below the melting point with prior heating to a temperature of 20° C. above the melting point and subsequent cooling with a cooling rate of 1° C.
    Type: Application
    Filed: February 13, 2019
    Publication date: February 4, 2021
    Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Peter Reichert, Nicolas Degiorgio, Martin Melchiors, Wolfgang Arndt
  • Patent number: 10899075
    Abstract: The invention relates to an additive manufacturing process (3D printing) using particles having a meltable polymer. The meltable polymer comprises a thermoplastic polyurethane polymer which has a flowing temperature (intersection of E? and E? in the DMA) of ?80° C. to <180° C. and a Shore A hardness according to DIN ISO 7619-1 of ?50 Shore A and <85 Shore A and which, at a temperature T, has a melt volume rate (melt volume rate (MVR)) according to ISO 1133 of ?5 to <15 cm3/10 min. The invention also relates to an item which can be obtained by means of the method.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: January 26, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Thomas Buesgen, Michael Kessler, Peter Reichert, Bettina Mettmann
  • Patent number: 10899074
    Abstract: The invention relates to an additive manufacturing process (3D printing) using particles having a meltable polymer. The meltable polymer comprises a thermoplastic polyurethane polymer which has a melting range (DSC, Differential Scanning calorimetry; second heating at heating rate 5 K/min) of 160 to 270° C. and a Shore D hardness according to DIN ISO 7619-1 of 50 or more and which, at a temperature T, has a melt volume rate (melt volume rate (MVR)) according to ISO 1133 of 5 to 15 cm/10 min and a change of the MVR, when this temperature T increases by 20° C., of greater than or equal to 90 cm3/10 min. The invention also relates to an item which can be obtained by means of the method.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: January 26, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Dirk Achten, Thomas Buesgen, Michael Kessler, Peter Reichert, Bettina Mettmann
  • Publication number: 20200353677
    Abstract: An additive manufacturing method wherein the carrier (400) is within a vessel (100), the vessel contains the free-radically crosslinkable resin (300) and a liquid (200) which is immiscible with the free-radically cross-linkable resin (300) and has a higher density than the free-radically crosslinkable resin (300), such that the free-radically crosslinkable resin (300) floats on top of the liquid (200) and, prior to each step II), the distance between the carrier (400) and the free-radically crosslinkable resin (300) is altered such that a layer of the free-radically crosslinkable resin forms above the uppermost surface (420), viewed in vertical direction, of the previously deposited layer of the construction material (600) and at least partially forms contact with this uppermost surface (420) of the previously deposited layer of the construction material (600). The free-radically crosslinkable resin (300) comprises a urethane (meth)acrylate.
    Type: Application
    Filed: December 12, 2018
    Publication date: November 12, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Roland Wagner, Florian Stempfle, Christoph Tomczyk
  • Patent number: 10806208
    Abstract: The invention relates to a method for producing a three-dimensional object, the outer surface of which has at least one surface section that is generated in that, by means of an additive production method (layer-building forming method), initially a surface section is produced on a flat base plate (5) in two-dimensional form, comprising the following steps: I) applying at least one curable polymer or curable reaction resin with a respective elastic modulus according to DIN 53504 (effective: 18 Apr.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 20, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Thomas Büsgen, Dirk Achten, Nicolas Degiorgio, Roland Wagner, Thomas Michaelis, Maria Elisabeth Beenen-Fuchs
  • Publication number: 20200325951
    Abstract: A deformable body, wherein the body is constructed from a multiplicity of layers of a polymer construction material and in which a construction direction is defined perpendicular to the layers. The body preferably comprises layers with a multiplicity of curve pairs (10) which are formed by the construction material and which run in the same direction as one another, the curve pairs comprise in each case two periodic curves (20, 30) running oppositely with respect to one another, and the curve pairs comprise portions of maximum spacing to one another (40, 41, 60, 61) and portions of minimum spacing to one another (50, 51, 70, 71).
    Type: Application
    Filed: November 23, 2018
    Publication date: October 15, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Nicolas Degiorgio, Jonas Kuenzel, Ting Liu, Maximilian Wolf
  • Publication number: 20200307076
    Abstract: The invention relates to an additive manufacturing process (3D printing) using particles having a meltable polymer. The meltable polymer comprises a thermoplastic polyurethane polymer which has a flowing temperature (intersection of E? and E? in the DMA) of ?80° C. to <180° C. and a Shore A hardness according to DIN ISO 7619-1 of ?50 Shore A and <85 Shore A and which, at a temperature T, has a melt volume rate (melt volume rate (MVR)) according to ISO 1133 of ?5 to <15 cm3/10 min. The invention also relates to an item which can be obtained by means of the method.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 1, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Michael Kessler, Peter Reichert, Bettina Mettmann
  • Publication number: 20200309656
    Abstract: The invention relates to a method for the mechanical testing of a structure (1, 10) formed as one part, comprising the following steps: a) identifying a sub-element (2, 11) in the structure (1, 10) formed as one part for generating a test element (3, 3?) that is intended to undergo mechanical testing, wherein the sub-element (2, 11) only represents a portion of the structure (1, 10) formed as one part, b) determining the spatial-geometrical structure of the sub-element (2, 11), c) generating the test element (3, 3?) on the basis of the spatial-geometrical structure of the sub-element (2, 11) and at least in part or in full by way of a 3D printing process, d) carrying out at least one mechanical test on the test element (3, 3?) generated.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 1, 2020
    Applicants: Covestro Deutschland AG, Covestro Deutschland AG
    Inventors: Dirk ACHTEN, Thomas BÜSGEN, Dirk DIJKSTRA, Nicolas DEGIORGIO
  • Publication number: 20200306829
    Abstract: The present invention relates to a method for producing a treated object, comprising the steps of: applying a layer of particles to a target area; applying a liquid binder to a selected portion of the layer in accordance with a cross-section of the object, so that the particles in the selected portion are bonded; repeating the steps of applying a layer of particles and applying a binder for a plurality of layers so that the bonded portions of the adjacent layers are bonded to form an object, wherein at least a part of the particles comprises a meltable polymer. A binder which cures by cross-linking is preferably selected as the binder. The obtained object is at least partially contacted with a liquid heated to ?T or with a powder bed heated to ?T in order to obtain the treated object. T represents a temperature of ?25° C.
    Type: Application
    Filed: December 18, 2018
    Publication date: October 1, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Roland Wagner, Jonas Kuenzel, Michael Kessler, Bettina Mettmann
  • Publication number: 20200307073
    Abstract: The invention relates to an additive manufacturing process (3D printing) using particles having a meltable polymer. The meltable polymer comprises a thermoplastic polyurethane polymer which has a melting range (DSC, Differential Scanning calorimetry; second heating at heating rate 5 K/min) of 160 to 270° C. and a Shore D hardness according to DIN ISO 7619-1 of 50 or more and which, at a temperature T, has a melt volume rate (melt volume rate (MVR)) according to ISO 1133 of 5 to 15 cm/10 min and a change of the MVR, when this temperature T increases by 20° C., of greater than or equal to 90 cm3/10 min. The invention also relates to an item which can be obtained by means of the method.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 1, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Michael Kessler, Peter Reichert, Bettina Mettmann
  • Publication number: 20200255584
    Abstract: The invention relates to a method for producing a polymer comprising the following steps: (A) depositing a radically cross-linkable resin, obtaining a radically cross-linked resin; and (B) treating the radically cross-linked resin under conditions which are sufficient to trigger a chemical reaction that is different from the radical cross-linking in the radically cross-linked resin. The radically cross-linkable resin comprises a curable component, in which there are NCO groups, olefinic C?C double bonds and epoxide groups, and the chemical reaction in the radically cross-linked resin that is different from the radical cross-linking is the reaction of NCO groups and epoxide groups to form oxazolidinone groups.
    Type: Application
    Filed: October 12, 2018
    Publication date: August 13, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Roland Wagner, Florian Stempfle, Christoph Tomczyk
  • Publication number: 20200198226
    Abstract: The invention relates to a method for producing an object, comprising the step of producing the object from a construction material by means of an additive manufacturing process, wherein the construction material comprising a polyurethane and/or polyester polyol. The construction material further comprises a polyamine component and during and/or after the production of the object, the construction material is heated to a temperature of ?50° C. The invention also relates to an object obtained according to the claimed method.
    Type: Application
    Filed: June 13, 2018
    Publication date: June 25, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Christoph Eggert, Hans-Josef Laas, Florian Johannes Stempfle, Michael Ludewig
  • Publication number: 20200190245
    Abstract: The present invention relates to polymerizable compositions which contain components that can be crosslinked both via isocyanurate bonds and by a radical reaction mechanism. The invention further relates to methods by way of which polymers can be produced from said compositions.
    Type: Application
    Filed: November 14, 2017
    Publication date: June 18, 2020
    Inventors: Paul HEINZ, Richard MEISENHEIMER, Jöng TILLACK, Dirk ACHTEN, Thomas BÜSGEN, Michael LUDEWIG, Christoph TOMCZYK, Roland WAGNER
  • Publication number: 20200140707
    Abstract: The present invention relates to a method for producing an object in an additive manufacturing process from a precursor and comprises the following steps: I) depositing a layer of a radically cross-linkable construction material, which corresponds to a first selected cross-section of the precursor, on a carrier; II) depositing a layer of a radically cross-linkable construction material, which corresponds to a further selected cross-section of the precursor, on a previously applied layer of the radically cross-linked construction material; III) repeating step II) until the precursor is formed. The radically cross-linkable construction material comprises a thermoplastic radically cross-linkable polyurethane with a urethane group content of ?5% by weight and a photoinitiator. The radically cross-linkable construction material is also heated to a processing temperature that is greater than the melting point of the radically cross-linkable polyurethane. After step III) the precursor having a temperature of 20° C.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 7, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Christoph Tomczyk, Michael Ludewig, Thomas Faecke, Roland Wagner, Florian Stempfle
  • Publication number: 20200130283
    Abstract: A method for producing an object from a filamentary building material in an additive fused deposition modelling process, comprising the steps of: providing the building material; transporting the building material into a printhead at a feed rate for the building material, wherein the building material is transported between a driven drive wheel and a second wheel; melting the building material by means of a heating device in the printhead; discharging the molten building material to a discharge location, corresponding to a selected cross section of the object to be produced, at a discharge rate through an orifice of the printhead, with relative movement of the printhead in relation to the discharge location at a predetermined speed to movement along a predetermined path, wherein the path has at each location a curvature that can assume a positive value, zero or a negative value; wherein a control unit controls at least the drive of the drive wheel, the heating device in the printhead and the movement of the p
    Type: Application
    Filed: June 26, 2018
    Publication date: April 30, 2020
    Inventors: Dirk Achten, Thomas Buesgen, Levent Akbas, Roland Wagner, Nicolas Degiorgio, Jonas Kuenzel