Patents by Inventor Thomas Butyn
Thomas Butyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240040103Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: October 6, 2023Publication date: February 1, 2024Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11876950Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers. One or more polygons representative of corresponding portions of objects in the scene are obtained for each layer and used to determine a view-independent representation. This view independent representation and data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g.Type: GrantFiled: August 18, 2022Date of Patent: January 16, 2024Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11876949Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on transparency of surfaces is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: April 6, 2022Date of Patent: January 16, 2024Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20230377250Abstract: A method for light field rendering of a 3D scene data. The rendering method comprises capturing a light field image at a retracted plane, parallel to the display plane, decoding a light field camera to produce a hogel camera for each hogel at the retraction plane to produce an integral image, and applying a pixel remapping technique to the pixels of the integral image for display on a light field display. The 3D scene is captured and remapped to adjust the perspective giving the illusion the image was taken at the display plane, allowing captured images to be displayed in both the inner frustum and outer frustum of a light field display, creating an immersive experience.Type: ApplicationFiled: May 18, 2022Publication date: November 23, 2023Inventors: Thomas Butyn, Colton Smith
-
Patent number: 11818327Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: March 14, 2022Date of Patent: November 14, 2023Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11743443Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: December 15, 2021Date of Patent: August 29, 2023Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20220400242Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers. One or more polygons representative of corresponding portions of objects in the scene are obtained for each layer and used to determine a view-independent representation. This view independent representation and data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g.Type: ApplicationFiled: August 18, 2022Publication date: December 15, 2022Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11457197Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers. One or more polygons representative of corresponding portions of objects in the scene are obtained for each layer and used to determine a view-independent representation. This view independent representation and data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g.Type: GrantFiled: February 21, 2020Date of Patent: September 27, 2022Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20220232196Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on transparency of surfaces is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: April 6, 2022Publication date: July 21, 2022Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20220217319Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: March 14, 2022Publication date: July 7, 2022Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11363249Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on transparency of surfaces is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: February 21, 2020Date of Patent: June 14, 2022Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11330244Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: December 21, 2020Date of Patent: May 10, 2022Assignee: Avalon Holographies Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20220109817Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: December 15, 2021Publication date: April 7, 2022Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 11252392Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: February 21, 2020Date of Patent: February 15, 2022Assignee: Avalon Holographies Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20210203903Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on directions of normals is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: March 11, 2021Publication date: July 1, 2021Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20210152807Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: December 21, 2020Publication date: May 20, 2021Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 10986326Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on directions of normals is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: February 21, 2020Date of Patent: April 20, 2021Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Patent number: 10924727Abstract: A simulator for light field displays. A high-performance simulator that can operate in real-time, allowing for VR-based evaluation of display designs. These capabilities allow for rapid exploration of display parameters (e.g. angular and hogel resolution, field of view, etc.), the visualization of how the angular spread of the rays that can affect quality and the evaluation of artifacts from light field processing. Additionally, the high-throughput nature of the simulation makes it amenable for use in the evaluation of light processing procedures such as those involved in light field rendering and compression contexts. The speed and ease with which one can explore light field display parameters makes this simulator the ideal tool for light field content design and evaluation.Type: GrantFiled: October 10, 2018Date of Patent: February 16, 2021Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Matthew Troke, Chuck Rumbolt, Robert Lockyer, Donovan Benoit, Thomas Butyn
-
Patent number: 10911735Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using an effective resolution function to determine a suitable sampling rate and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: GrantFiled: February 21, 2020Date of Patent: February 2, 2021Assignee: Avalon Holographics Inc.Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn
-
Publication number: 20200275075Abstract: A system and methods for a CODEC driving a real-time light field display for multi-dimensional video streaming, interactive gaming and other light field display applications is provided applying a layered scene decomposition strategy. Multi-dimensional scene data including information on directions of normals is divided into a plurality of data layers of increasing depths as the distance between a given layer and the display surface increases. Data layers which are sampled using a plenoptic sampling scheme and rendered using hybrid rendering, such as perspective and oblique rendering, to encode light fields corresponding to each data layer. The resulting compressed, (layered) core representation of the multi-dimensional scene data is produced at predictable rates, reconstructed and merged at the light field display in real-time by applying view synthesis protocols, including edge adaptive interpolation, to reconstruct pixel arrays in stages (e.g. columns then rows) from reference elemental images.Type: ApplicationFiled: February 21, 2020Publication date: August 27, 2020Inventors: Matthew Hamilton, Chuck Rumbolt, Donovan Benoit, Matthew Troke, Robert Lockyer, Thomas Butyn