Patents by Inventor Thomas Byrd

Thomas Byrd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12102319
    Abstract: Methods for measuring tissue defects include the use of a suture anchor, a drill guide, a needle driver, and a ruler. Using the drill guide, the surgeon extends the suture attached to an implanted anchor between the first and second ends of the defect. The surgeon then attaches a needle driver to the suture extending from the proximal end of the drill guide. Finally, the surgeon retracts the suture back through the drill guide and measures the distance between the needle driver and the proximal end of the drill guide to determine a length of a graft needed to repair the defect.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: October 1, 2024
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: J. W. Thomas Byrd, Timothy Young, Michael Thyden, Marc J. Balboa
  • Publication number: 20220192652
    Abstract: Methods for measuring tissue defects include the use of a suture anchor, a drill guide, a needle driver, and a ruler. Using the drill guide, the surgeon extends the suture attached to an implanted anchor between the first and second ends of the defect. The surgeon then attaches a needle driver to the suture extending from the proximal end of the drill guide. Finally, the surgeon retracts the suture back through the drill guide and measures the distance between the needle driver and the proximal end of the drill guide to determine a length of a graft needed to repair the defect.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 23, 2022
    Applicant: Smith & Nephew, Inc.
    Inventors: J.W. Thomas Byrd, Timothy Young, Michael Thyden, Marc J. Balboa
  • Patent number: 9867585
    Abstract: The invention relates to a method for optimally visualizing a morphologic region of interest of a bone in an X-ray image of a patient, comprising: —receiving a set of 3D medical images of the bone, —creating a 3D bone model of at least part of the bone comprising said region of interest from said set of 3D images, —determining a criterion representative of a visualization of the extent of said morphologic region of interest, —automatically determining from the 3D bone model optimal relative bone and X-ray orientation so as to optimize said criterion for said patient, —creating at least one virtual X-ray image of the bone from said set of 3D images according to said optimal relative bone and virtual X-ray orientation.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 16, 2018
    Assignees: Smith & Nephew, Inc., A2 Surgical
    Inventors: Sean Scanlan, Stéphane Lavallee, Laurence Chabanas, Asheesh Bedi, Thomas Byrd, Bryan Kelly, Christopher Larson
  • Patent number: 9672662
    Abstract: The invention relates to a method for creating a surgical resection plan for treating a pathological deformity of a bone.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: June 6, 2017
    Assignees: Smith & Nephew, Inc., A2 Surgical
    Inventors: Sean Scanlan, Stephane LaVallee, Laurence Chabanas, Asheesh Bedi, Thomas Byrd, Bryan Kelly, Christopher Larson
  • Patent number: 9514533
    Abstract: The invention relates to a method for non-invasive reproducible determination of a corrected surface on a 3D bone surface model constructed from 3D medical image of a bone having a deformation consisting in a bump overgrowth at the head-neck junction; wherein said corrected surface comprises: i) a 3D spherical corrected surface patch on the head portion of said 3D bone surface model, and ii) a 3D smooth transition corrected surface patch on the neck portion of said 3D bone surface model, contiguous to said 3D spherical corrected surface patch; Said corrected surface patches are defined by a set of parameters comprising: iii) at least one first parameter (a*) representing a spherical extent value of said 3D spherical corrected surface patch, iv) and a set of at least one second parameter, said set determining the 3D correction boundary of said corrected surface patches, such that said corrected surface patches are continuous with said 3D bone surface model along said boundary.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 6, 2016
    Assignee: Smith & Nephew, Inc.
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jérôme Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20160253846
    Abstract: The invention relates to a method for creating a surgical resection plan for treating a pathological deformity of a bone.
    Type: Application
    Filed: July 25, 2014
    Publication date: September 1, 2016
    Inventors: Sean Scanlan, Stephane Lavallee, Laurence Chabanas, Asheesh Bedi, Thomas Byrd, Bryan Kelly, Christopher Larson
  • Publication number: 20160235381
    Abstract: The invention relates to a method for optimally visualizing a morphologic region of interest of a bone in an X-ray image of a patient, comprising:—receiving a set of 3D medical images of the bone,—creating a 3D bone model of at least part of the bone comprising said region of interest from said set of 3D images,—determining a criterion representative of a visualization of the extent of said morphologic region of interest,—automatically determining from the 3D bone model optimal relative bone and X-ray orientation so as to optimize said criterion for said patient,—creating at least one virtual X-ray image of the bone from said set of 3D images according to said optimal relative bone and virtual X-ray orientation.
    Type: Application
    Filed: October 8, 2014
    Publication date: August 18, 2016
    Inventors: Sean SCANLAN, Stéphane LAVALLEE, Laurence CHABANAS, Asheesh BEDI, Thomas BYRD, Bryan KELLY, Christopher LARSON
  • Patent number: 9183629
    Abstract: The invention relates to a method for automatically determining, on a bone comprising a head portion contiguous to a neck portion, parameters for characterizing a bump deformation on the head-neck junction of the bone from acquired 3D medical image, the method comprising the following steps: i) constructing a 3D surface model of the bone; ii) fitting a sphere on the spherical portion of the head of the bone; iii) determining a neck axis characterizing the neck portion of the bone; iv) determining from the fitted sphere and the neck axis, a clock face referential on the head of the bone rotating around the neck axis; v) determining a 3D curve on the 3D surface model characterizing the head-neck junction of the bone; vi) determining, from the 3D curve, the summit of the bump deformation of the head-neck junction of the bone; vii) determining, from said summit of the bump deformation, first and a second parameters (?3D, iMax) characterizing the maximum bump deformation of the head-neck junction of the bone.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: November 10, 2015
    Assignee: A2 Surgical
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jérôme Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20150269727
    Abstract: The invention relates to a method for non-invasive reproducible determination of a corrected surface on a 3D bone surface model constructed from 3D medical image of a bone having a deformation consisting in a bump overgrowth at the head-neck junction; wherein said corrected surface comprises: i) a 3D spherical corrected surface patch on the head portion of said 3D bone surface model, and ii) a 3D smooth transition corrected surface patch on the neck portion of said 3D bone surface model, contiguous to said 3D spherical corrected surface patch; Said corrected surface patches are defined by a set of parameters comprising: iii) at least one first parameter (a*) representing a spherical extent value of said 3D spherical corrected surface patch, iv) and a set of at least one second parameter, said set determining the 3D correction boundary of said corrected surface patches, such that said corrected surface patches are continuous with said 3D bone surface model along said boundary.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 24, 2015
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jérôme Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Patent number: 9122670
    Abstract: The invention relates to a method for real-time determination an optimal corrected surface of a first bone and/or a second bone forming together an articulation, the first and/or second bones presenting an overgrowth deformation, said corrected surface providing a greater range of motion of the articulation, the method comprising the following steps: i) constructing from acquired images of the articulation 3D voxel models of the first bone and the second bone; ii) for each of first and second bone voxel models, constructing a coordinate system defined by a center and three axes; iii) applying a motion pattern on the coordinate system of the second bone with respect to the coordinate system of the first bone, a motion pattern being a set of contiguous positions of the first or second bone coordinate systems with respect to the other bone coordinate system, the contiguous positions defining a movement of one bone with respect to the other, wherein said motion pattern is initially loaded from a data base of pred
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 1, 2015
    Assignee: A2 Surgical
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Patent number: 9020223
    Abstract: The invention relates to a method for non-invasive reproducible determination of a corrected surface on a 3D bone surface model constructed from 3D medical image of a bone having a deformation consisting in a bump overgrowth at the head-neck junction; wherein said corrected surface comprises: i) a 3D spherical corrected surface patch on the head portion of said 3D bone surface model, and ii) a 3D smooth transition corrected surface patch on the neck portion of said 3D bone surface model, contiguous to said 3D spherical corrected surface patch; Said corrected surface patches are defined by a set of parameters comprising: iii) at least one first parameter (a*) representing a spherical extent value of said 3D spherical corrected surface patch, iv) and a set of at least one second parameter, said set determining the 3D correction boundary of said corrected surface patches, such that said corrected surface patches are continuous with said 3D bone surface model along said boundary.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 28, 2015
    Assignee: A2 Surgical
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20150049928
    Abstract: The invention relates to a method for automatically determining, on a bone comprising a head portion contiguous to a neck portion, parameters for characterizing a bump deformation on the head-neck junction of the bone from acquired 3D medical image, the method comprising the following steps: i) constructing a 3D surface model of the bone; ii) fitting a sphere on the spherical portion of the head of the bone; iii) determining a neck axis characterizing the neck portion of the bone; iv) determining from the fitted sphere and the neck axis, a clock face referential on the head of the bone rotating around the neck axis; v) determining a 3D curve on the 3D surface model characterizing the head-neck junction of the bone; vi) determining, from the 3D curve, the summit of the bump deformation of the head-neck junction of the bone; vii) determining, from said summit of the bump deformation, first and a second parameters (?3D, iMax) characterizing the maximum bump deformation of the head-neck junction of the bone.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 19, 2015
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jérôme Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Patent number: 8923584
    Abstract: The invention relates to a method for automatically determining, on a bone comprising a head portion contiguous to a neck portion, parameters for characterizing a bump deformation on the head-neck junction of the bone from acquired 3D medical image, the method comprising the following steps: i) constructing a 3D surface model of the bone; ii) fitting a sphere on the spherical portion of the head of the bone; iii) determining a neck axis characterizing the neck portion of the bone; iv) determining from the fitted sphere and the neck axis, a clock face referential on the head of the bone rotating around the neck axis; v) determining a 3D curve on the 3D surface model characterizing the head-neck junction of the bone; vi) determining, from the 3D curve, the summit of the bump deformation of the head-neck junction of the bone; vii) determining, from said summit of the bump deformation, first and a second parameters (?3D, iMax) characterizing the maximum bump deformation of the head-neck junction of the bone.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: December 30, 2014
    Assignee: A2 Surgical
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Patent number: 8753482
    Abstract: A sheet formation section of a paper machine includes a sensor that measures a first characteristic of a sheet of paper being formed. The sensor may measure a characteristic such as streaking, rises, depressions, or smoothness. The sheet formation section also includes an apparatus that applies a magnetic field to the sheet of paper being formed. The machine also includes a controller that causes the apparatus to apply the magnetic field in response to a signal from the sensor representative of the first characteristic. The magnetic field transforms a second characteristic of the sheet of paper. The apparatus may transform a characteristic such as water content or fiber orientation.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 17, 2014
    Assignee: Honeywell International Inc.
    Inventor: Christopher Thomas Byrd
  • Publication number: 20130089253
    Abstract: The invention relates to a method for non-invasive reproducible determination of a corrected surface on a 3D bone surface model constructed from 3D medical image of a bone having a deformation consisting in a bump overgrowth at the head-neck junction; wherein said corrected surface comprises: i) a 3D spherical corrected surface patch on the head portion of said 3D bone surface model, and ii) a 3D smooth transition corrected surface patch on the neck portion of said 3D bone surface model, contiguous to said 3D spherical corrected surface patch; Said corrected surface patches are defined by a set of parameters comprising: iii) at least one first parameter (a*) representing a spherical extent value of said 3D spherical corrected surface patch, iv) and a set of at least one second parameter, said set determining the 3D correction boundary of said corrected surface patches, such that said corrected surface patches are continuous with said 3D bone surface model along said boundary.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 11, 2013
    Applicant: A2 Surgical
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20130085723
    Abstract: The invention relates to a method for real-time determination an optimal corrected surface of a first bone and/or a second bone forming together an articulation, the first and/or second bones presenting an overgrowth deformation, said corrected surface providing a greater range of motion of the articulation, the method comprising the following steps: i) constructing from acquired images of the articulation 3D voxel models of the first bone and the second bone; ii) for each of first and second bone voxel models, constructing a coordinate system defmed by a center and three axes; iii) applying a motion pattern on the coordinate system of the second bone with respect to the coordinate system of the first bone, a motion pattern being a set of contiguous positions of the first or second bone coordinate systems with respect to the other bone coordinate system, the contiguous positions defining a movement of one bone with respect to the other, wherein said motion pattern is initially loaded from a data base of pre-d
    Type: Application
    Filed: July 16, 2011
    Publication date: April 4, 2013
    Applicant: A2 SURGICAL
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20130083984
    Abstract: The invention relates to a method for automatically determining, on a bone comprising a head portion contiguous to a neck portion, parameters for characterizing a bump deformation on the head-neck junction of the bone from acquired 3D medical image, the method comprising the following steps: i) constructing a 3D surface model of the bone; ii) fitting a sphere on the spherical portion of the head of the bone; iii) determining a neck axis characterizing the neck portion of the bone; iv) determining from the fitted sphere and the neck axis, a clock face referential on the head of the bone rotating around the neck axis; v) determining a 3D curve on the 3D surface model characterizing the head-neck junction of the bone; vi) determining, from the 3D curve, the summit of the bump deformation of the head-neck junction of the bone; vii) determining, from said summit of the bump deformation, first and a second parameters (?3D, iMax) characterizing the maximum bump deformation of the head-neck junction of the bone.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 4, 2013
    Applicant: A2 SURGICAL
    Inventors: Laurence Chabanas, Stéphane Lavallee, Jerome Tonetti, Thomas Byrd, Bryan Talmadge Kelly, Christopher Larson
  • Publication number: 20090272508
    Abstract: A sheet formation section of a paper machine includes a sensor that measures a first characteristic of a sheet of paper being formed. The sensor may measure a characteristic such as streaking, rises, depressions, or smoothness. The sheet formation section also includes an apparatus that applies a magnetic field to the sheet of paper being formed. The machine also includes a controller that causes the apparatus to apply the magnetic field in response to a signal from the sensor representative of the first characteristic. The magnetic field transforms a second characteristic of the sheet of paper. The apparatus may transform a characteristic such as water content or fiber orientation.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Applicant: Honeywell International Inc.
    Inventor: Christopher Thomas Byrd