Patents by Inventor Thomas C. Forrester

Thomas C. Forrester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11258471
    Abstract: An integrative software radio embodies a single multi-radio device including functionalities that are a superset of a plurality of individual discrete radio devices includes a radio frequency transmitter that integrates transmission capabilities of a plurality of discrete transmitters such that the radio frequency transmitter is configured to generate a first amalgamated waveform that is a combination of individual waveforms, each individual waveform corresponding to the transmission capabilities of its respective one of the plurality of discrete transmitters, wherein the transmission capabilities each of the plurality of discrete transmitters comprise operating characteristics different from one or more of the other discrete transmitters, wherein a waveform of a discrete transmitter comprises an adjustable electromagnetic wavefront and a proprietary waveform generation component; and a mission module communicatively coupled to the plurality of discrete transmitters and configured to alter the wavefront of at
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: February 22, 2022
    Assignee: PHYSICAL OPTICS CORPORATION
    Inventors: Pedram Boghrat, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Robert Anthony Kunc, Anthony Shangchi Lai, Kang S. Lee, John Matthews, Ranjit Dinkar Pradhan, Robert Everett Stephens
  • Publication number: 20200119756
    Abstract: An integrative software radio embodies a single multi-radio device including functionalities that are a superset of a plurality of individual discrete radio devices includes a radio frequency transmitter that integrates transmission capabilities of a plurality of discrete transmitters such that the radio frequency transmitter is configured to generate a first amalgamated waveform that is a combination of individual waveforms, each individual waveform corresponding to the transmission capabilities of its respective one of the plurality of discrete transmitters, wherein the transmission capabilities each of the plurality of discrete transmitters comprise operating characteristics different from one or more of the other discrete transmitters, wherein a waveform of a discrete transmitter comprises an adjustable electromagnetic wavefront and a proprietary waveform generation component; and a mission module communicatively coupled to the plurality of discrete transmitters and configured to alter the wavefront of at
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Pedram Boghrat, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Robert Anthony Kunc, Anthony Shangchi Lai, Kang S. Lee, John Matthews, Ranjit Dinkar Pradhan, Robert Everett Stephens
  • Publication number: 20200065827
    Abstract: The present disclosure provides an anticounterfeiting system based on optical technology that verify the authenticity of protected cinema screens. The optical technology includes taggants embedded or attached to the screen and an optical readout system that can interrogate the taggant layer and receive the taggant output. The taggants are capable of reflecting a pattern that unambiguously demonstrates that the screen contains the taggant. The taggants are covert because they are not visible under normal lighting conditions or during cinema operation, but are detected when interrogated by the optical readout system.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 27, 2020
    Inventors: Thomas C. Forrester, A. Alkan Gulses, Seth Coe-Sullivan, Anthony Ang, Russell M. Kurtz, Juan Russo
  • Patent number: 10511337
    Abstract: An integrative software radio embodies a single multi-radio device including functionalities that are a superset of a plurality of individual discrete radio devices includes a radio frequency transmitter that integrates transmission capabilities of a plurality of discrete transmitters such that the radio frequency transmitter is configured to generate a first amalgamated waveform that is a combination of individual waveforms, each individual waveform corresponding to the transmission capabilities of its respective one of the plurality of discrete transmitters, wherein the transmission capabilities each of the plurality of discrete transmitters comprise operating characteristics different from one or more of the other discrete transmitters, wherein a waveform of a discrete transmitter comprises an adjustable electromagnetic wavefront and a proprietary waveform generation component; and a mission module communicatively coupled to the plurality of discrete transmitters and configured to alter the wavefront of at
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: December 17, 2019
    Assignee: PHYSICAL OPTICS CORPORATION
    Inventors: Pedram Boghrat, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Robert Anthony Kunc, Anthony Shangchi Lai, Kang S. Lee, John Matthews, Ranjit Dinkar Pradhan, Robert Everett Stephens
  • Publication number: 20180062674
    Abstract: An integrative software radio embodies a single multi-radio device including functionalities that are a superset of a plurality of individual discrete radio devices includes a radio frequency transmitter that integrates transmission capabilities of a plurality of discrete transmitters such that the radio frequency transmitter is configured to generate a first amalgamated waveform that is a combination of individual waveforms, each individual waveform corresponding to the transmission capabilities of its respective one of the plurality of discrete transmitters, wherein the transmission capabilities each of the plurality of discrete transmitters comprise operating characteristics different from one or more of the other discrete transmitters, wherein a waveform of a discrete transmitter comprises an adjustable electromagnetic wavefront and a proprietary waveform generation component; and a mission module communicatively coupled to the plurality of discrete transmitters and configured to alter the wavefront of at
    Type: Application
    Filed: September 27, 2017
    Publication date: March 1, 2018
    Inventors: Pedram Boghrat, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Robert Anthony Kunc, Anthony Shangchi Lai, Kang S. Lee, John Matthews, Ranjit Dinkar Pradhan, Robert Everett Stephens
  • Patent number: 9831899
    Abstract: An integrative software radio embodies a single multi-radio device including functionalities that are a superset of a plurality of individual discrete radio devices includes a radio frequency transmitter that integrates transmission capabilities of a plurality of discrete transmitters such that the radio frequency transmitter is configured to generate a first amalgamated waveform that is a combination of individual waveforms, each individual waveform corresponding to the transmission capabilities of its respective one of the plurality of discrete transmitters, wherein the transmission capabilities each of the plurality of discrete transmitters comprise operating characteristics different from one or more of the other discrete transmitters, wherein a waveform of a discrete transmitter comprises an adjustable electromagnetic wavefront and a proprietary waveform generation component; and a mission module communicatively coupled to the plurality of discrete transmitters and configured to alter the wavefront of at
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 28, 2017
    Assignee: Physical Optics Corporation
    Inventors: Pedram Boghrat, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Robert Anthony Kunc, Anthony Shangchi Lai, Kang S. Lee, John Matthews, Ranjit Dinkar Pradhan, Robert Everett Stephens
  • Patent number: 9658438
    Abstract: A compound polyhedral concentrator (CPOC) lens is disclosed with one smooth curved surface facing the sun and an inner surface comprised of a 3D pattern of interpenetrating minimum deviation prisms with a common origin facing the absorber. This new type of stationary solar concentrator is used to extend the acceptance angles by minimizing blocking and tip optical losses that are common with radial Fresnel design forms. Moreover, when considering the extended time period for non-tracking of the sun's movement commensurate with the increased acceptance angles the total energy collected using a combination of a CPOC lens and a photovoltaic device will be greater than the total energy collected using the photovoltaic device by itself.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 23, 2017
    Assignee: LITRICITY, LLC.
    Inventors: Thomas C. Forrester, Mark Bennahmias, Robert S. Block, Paul Sidlo, Rudolf A. Wiedemann
  • Patent number: 9244260
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 26, 2016
    Assignee: LITRICITY, LLC
    Inventors: Thomas C. Forrester, Robert S. Block
  • Publication number: 20150370055
    Abstract: A compound polyhedral concentrator (CPOC) lens is disclosed with one smooth curved surface facing the sun and an inner surface comprised of a 3D pattern of interpenetrating minimum deviation prisms with a common origin facing the absorber. This new type of stationary solar concentrator is used to extend the acceptance angles by minimizing blocking and tip optical losses that are common with radial Fresnel design forms. Moreover, when considering the extended time period for non-tracking of the sun's movement commensurate with the increased acceptance angles the total energy collected using a combination of a CPOC lens and a photovoltaic device will be greater than the total energy collected using the photovoltaic device by itself.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 24, 2015
    Applicant: LITRICITY, LLC
    Inventors: Thomas C. FORRESTER, Rudolf A. WIEDEMANN, Mark BENNAHMIAS, Robert S. BLOCK, Paul SIDLO
  • Publication number: 20150053254
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 26, 2015
    Applicant: LlTRICITY, LLC
    Inventors: Thomas C. FORRESTER, Robert S. BLOCK
  • Patent number: 8696147
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 15, 2014
    Assignee: Litricity, LLC
    Inventors: Thomas C. Forrester, Robert S. Block
  • Patent number: 8477420
    Abstract: The present disclosure reveals a reflective, front-projection screen designed to faithfully and accurately display the images from state-of-the-art (SOTA) and next-generation 2D and 3D motion-picture projectors, such as those found in large-capacity public movie theaters, home theaters, offices, and for use with portable projection systems for consumer and commercial applications. In particular it discloses cinema-size light shaping 3D projection screens with front-surface microstructures and horizontal viewing angles in the range of 90 to 120 degrees.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: July 2, 2013
    Assignee: Luminit LLC
    Inventors: Leo Katsenelenson, Stanley Tafeng Kao, Engin Arik, Edward M. Kaiser, Thomas C. Forrester
  • Patent number: 8378277
    Abstract: An optical impact system controls munitions termination through sensing proximity to a target and preventing effects of countermeasures on false munitions termination. Embodiments can be implemented on in a variety of munitions such as small and mid caliber that can be applicable in non-lethal weapons and in weapons of high lethality with airburst capability for example and in guided air-to-ground and cruise missiles. Embodiments can improve accuracy, reliability and lethality of munitions depending on its designation without modification in a weapon itself and make the weapon resistant to optical countermeasures.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Physical Optics Corporation
    Inventors: Sergey Sandomirsky, Vladimir Esterkin, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Alexander Naumov, Naibing Ma, Sookwang Ro, Paul I. Shnitser
  • Publication number: 20120250150
    Abstract: The present disclosure reveals a reflective, front-projection screen designed to faithfully and accurately display the images from state-of-the-art (SOTA) and next-generation 2D and 3D motion-picture projectors, such as those found in large-capacity public movie theaters, home theaters, offices, and for use with portable projection systems for consumer and commercial applications. In particular it discloses cinema-size light shaping 3D projection screens with front-surface microstructures and horizontal viewing angles in the range of 90 to 120 degrees.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 4, 2012
    Applicant: Luminit, LLC
    Inventors: Leo Katsenelenson, Stanley Tafeng Kao, Engin Arik, Edward M. Kaiser, Thomas C. Forrester
  • Publication number: 20120211647
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 23, 2012
    Applicant: SUNRGI, LLC
    Inventors: Thomas C. Forrester, Robert S. Block
  • Patent number: 8210165
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: July 3, 2012
    Assignee: Sunrgi, LLC
    Inventors: Thomas C. Forrester, Robert S. Block
  • Patent number: 8154798
    Abstract: The present disclosure reveals a reflective, front-projection screen designed to faithfully and accurately display the images from state-of-the-art (SOTA) and next-generation 2D and 3D motion-picture projectors, such as those found in large-capacity public movie theaters, home theaters, offices, and for use with portable projection systems for consumer and commercial applications. In particular it discloses cinema-size light shaping 3D projection screens with front-surface microstructures and horizontal viewing angles in the range of 90 to 120 degrees.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: April 10, 2012
    Assignee: Luminit LLC
    Inventors: Leo Katsenelenson, Stanley Tafeng Kao, Philip Yi Zhi Chu, Engin B. Arik, Edward M. Kaiser, Thomas C Forrester
  • Publication number: 20110157695
    Abstract: The present disclosure reveals a reflective, front-projection screen designed to faithfully and accurately display the images from state-of-the-art (SOTA) and next-generation 2D and 3D motion-picture projectors, such as those found in large-capacity public movie theaters, home theaters, offices, and for use with portable projection systems for consumer and commercial applications. In particular it discloses cinema-size light shaping 3D projection screens with front-surface microstructures and horizontal viewing angles in the range of 90 to 120 degrees.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 30, 2011
    Applicant: LUMINIT, LLC
    Inventors: Leo Katsenelenson, Stanley Tafeng Kao, Philip Yi Zhi Chu, Engin B. Arik, Edward M. Kaiser, Thomas C. FORRESTER
  • Publication number: 20090185302
    Abstract: An arrangement utilizes diffractive, reflective and/or refractive optical elements combined to intensify and homogenize electromagnetic energy, such as natural sunlight in the terrestrial environment, for purposes such as irradiating a target area with concentrated homogenized energy. A heat activated safety mechanism is also described.
    Type: Application
    Filed: November 10, 2008
    Publication date: July 23, 2009
    Applicant: SUNRGI
    Inventors: Thomas C. Forrester, Robert S. Block
  • Patent number: 6954142
    Abstract: A sensor system in which a sensor suite has a locally located field sensing unit (FSU) that converts and evaluates sensor information using sensor fusion algorithms and is thereby able to send qualitative low-bandwidth, low power usage signals to a remote command post.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: October 11, 2005
    Inventors: Robert A. Lieberman, Thomas C. Forrester