Patents by Inventor Thomas C. Forschner

Thomas C. Forschner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5576471
    Abstract: 1,3-Propanediol is prepared in a process which involves reacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated cobalt catalyst and a lipophilic dihydroxyarene promoter to produce an intermediate product mixture containing 3-hydroxypropanal in an amount less than 15 wt %; extracting the 3-hydroxypropanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100.degree. C. and separating the aqueous phase containing 3-hydroxypropanal from the organic phase containing cobalt catalyst; hydrogenating the 3-hydroxypropanal in the aqueous phase to 1,3-propanediol; and recovering the 1,3-propanediol.The process enables the production of 1,3-propanediol in high yields and selectivity without the use of a phosphine ligand-modified cobalt catalyst.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: November 19, 1996
    Assignee: Shell Oil Company
    Inventors: Thomas C. Semple, Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Paul R. Weider
  • Patent number: 5563302
    Abstract: 1,3-Propanediol is prepared in a process which involves reacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated cobalt catalyst and a lipophilic phosphine oxide promoter to produce an intermediate product mixture containing 3-hydroxypropanal in an amount less than 15 wt %; extracting the 3-hydroxypropanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100.degree. C. and separating the aqueous phase containing 3-hydroxpropanal from the organic phase containing cobalt catalyst; hydrogenating the 3-hydroxypropanal in the aqueous phase to 1,3-propanediol; and recovering the 1,3-propanediol.The process enables the production of 1,3-propanediol in high yields and selectively without the use of a phosphine ligand-modified cobalt catalyst.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 8, 1996
    Assignee: Shell Oil Company
    Inventors: Paul R. Weider, Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple
  • Patent number: 5545766
    Abstract: 1,3-Propanediol is prepared in a process which involves reacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated cobalt catalyst and a lipophilic bidentate phosphine promoter to produce an intermediate product mixture containing 3-hydroxypropanal in an amount less than 15 wt%; extracting the 3-hydroxypropanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100.degree. C. and separating the aqueous phase containing 3-hydroxypropanal from the organic phase containing cobalt catalyst; hydrogenating the 3-hydroxypropanal in the aqueous phase to 1,3-propanediol; and recovering the 1,3-propanediol.The process enables the production of 1,3-propanediol in high yield and selectivity without the use of a phosphine ligand-modified cobalt catalyst.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: August 13, 1996
    Assignee: Shell Oil Company
    Inventors: Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5545765
    Abstract: 1,3-Propanediol is prepared in a process which involves reacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated cobalt catalyst and a lipophilic quaternary arsonium salt promoter to produce an intermediate product mixture containing 3-hydroxypropanal in an amount less than 15 wt %; extracting the 3-hydroxypropanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100.degree. C. and separating the aqueous phase containing 3-hydroxypropanal from the organic phase containing cobalt catalyst; hydrogenating the 3-hydroxypropanal in the aqueous phase to 1,3-propanediol; and recovering the 1,3-propanediol.The process enables the production of 1,3-propanediol in high yields and selectivity without the use of a phosphine ligand-modified cobalt catalyst.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: August 13, 1996
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Joseph B. Powell, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5545767
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic phenol at a temperature within the range of about 50.degree. to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: August 13, 1996
    Assignee: Shell Oil Company
    Inventors: Paul R. Weider, Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple
  • Patent number: 5463144
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic quaternary ammonium salt at a temperature within the range of about 50.degree. to about 100.degree. C. and a, pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Terry B. Thomason, Thomas C. Semple, Paul R. Weider, Juan P. Arhancet
  • Patent number: 5463146
    Abstract: 1,3-propanediol is prepared in a process comprising the steps of:(a) contacting ethylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a lipophilic arsine at a temperature within the range of about 50 to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, under reaction conditions effective to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal;(b) adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Joseph B. Powell, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5463145
    Abstract: 1,3-Propanediol is prepared in a process comprising the steps of:contacting, in an essentially non-water-miscible organic solvent, ethylene oxide with carbon monoxide and hydrogen in the presence of a catalytic amount of a non-phosphine-ligated cobalt compound and an effective amount of a lipophilic quaternary phosphonium salt promoter at a temperature within the range of about 50.degree. to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, to produce an intermediate product mixture comprising less than 15 wt % 3-hydroxypropanal;adding an aqueous liquid to said intermediate product mixture and extracting into said aqueous liquid a major portion of the 3-hydroxypropanal at a temperature less than about 100.degree. C.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Shell Oil Company
    Inventors: Joseph B. Powell, Lynn H. Slaugh, Thomas C. Forschner, Thomas C. Semple, Paul R. Weider
  • Patent number: 5310945
    Abstract: A highly selective dehydrogenation catalyst for the preparation of para-dioxanones is produced by impregnating copper and zinc on a promoter impregnated support. This catalyst is effective for the dehydrogenation of dialkylene glycols to produce a high purity 2-para-dioxanones.
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: May 10, 1994
    Assignee: Shell Oil Company
    Inventor: Thomas C. Forschner
  • Patent number: 5264133
    Abstract: A process for the removal of soluble selenium from aqueous media comprising contacting the aqueous media with a porous support material having exchanged thereon metal ions selected from transition metal ions, alkali earth metal ions and mixtures thereof.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: November 23, 1993
    Assignee: Shell Oil Company
    Inventors: Thomas C. Forschner, Peter A. Kilty, Thomas F. Brownscombe
  • Patent number: 5159128
    Abstract: This invention is a process for the catalytic cracking of parafins to produce olefins in high yield while minimizing production of aromatics. The catalyst used is a zeolite in combination with an alkali(ne earth) metal compound wherein the sum of the amount of the alkali(ne earth) metal in the compound plus any metal cation exchanged into the zeolite is in excess of that required to provide a fully metal cation-exchanged zeolite.
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: October 27, 1992
    Assignee: Shell Oil Company
    Inventors: Thomas C. Forschner, Thomas F. Brownscombe
  • Patent number: 5159127
    Abstract: This invention is a two step process for converting linear paraffins to linear alpha olefins. In the first step the paraffins are cracked to a mixture of alpha and internal olefins by use of a cracking catalyst of a zeolite in combination with an alkali(ne earth) metal compound wherein the sum of the amount of the alkali(ne earth) metal in the compound plus any metal cation exchanged into the zeolite is in excess of that required to provide a fully metal cation-exchanged zeolite. The resulting olefin-containing cracked product is then converted to a substantially alpha olefin-containing product by contact with ethylene and a disproportionation catalyst at disproportionation conditions. The resulting products contains only small amounts of aromatics.
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: October 27, 1992
    Assignee: Shell Oil Company
    Inventors: Thomas C. Forschner, Thomas F. Brownscombe, Jiang-Jen Lin
  • Patent number: 5095166
    Abstract: This invention is a process for the catalytic cracking of paraffins to produce linear olefins while minimizing production of aromatics and branched olefins. The catalyst used is an alkali(ne-erath) metal oxide, optionally supported on a porous oxidic carrier.
    Type: Grant
    Filed: August 31, 1990
    Date of Patent: March 10, 1992
    Assignee: Shell Oil Company
    Inventors: Thomas C. Forschner, Thomas F. Brownscombe
  • Patent number: 5093540
    Abstract: This invention relates to a two step process for converting linear paraffins to alpha olefins. The first step comprises contacting said paraffins with a catalyst comprising an oxide an alkali or alkaline earth metal optionally dispersed on a refractory and porous carrier. The product of this process contains only small amounts of aromatics and branched olefins. The cracked product is then converted to an olefin product containing primarily alph olefins by contacting with ethylene and a disproportionation catalyst as disproportionation conditions.
    Type: Grant
    Filed: August 31, 1990
    Date of Patent: March 3, 1992
    Assignee: Shell Oil Company
    Inventors: Thomas C. Forschner, Thomas F. Brownscombe, Jiang-Jen Lin
  • Patent number: 5070052
    Abstract: This invention relates to a composition comprising a zeolite and a zinc or a zinc plus an alkali metal and/or an alkaline earth metal compound wherein the sum of the amount of the zinc or zinc plus alkali metal and/or alkaline earth metal in the compound plus any metal cation exchanged into the zeolite is in excess of that required to provide a fully metal cation-exchanged zeolite. The catalyst is preferably activated before use as a catalyst by heating to 400.degree. C. to 650.degree. C., typically in a nitrogen or air atmosphere.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: December 3, 1991
    Assignee: Shell Oil Company
    Inventors: Thomas F. Brownscombe, Thomas C. Forschner, Lynn H. Slaugh