Patents by Inventor Thomas C. Greening

Thomas C. Greening has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102856
    Abstract: Embodiments are directed to optical measurement systems that utilize multiple emitters to emit light during a measurement, as well as methods of performing measurements using these optical measurement systems. The optical measurement systems may include a light generation assembly that is configured to generate light via a light source unit, and a photonic integrated circuit that includes a launch group having a plurality of emitters. Each of these emitters is optically coupled to the light generation assembly to receive light generated from the light generation assembly, and may emit this light from a surface of the photonic integrated circuit. The optical measurement system may perform a measurement in which the light generation assembly generates light and each of the plurality of emitters simultaneously emit light received from the light generation assembly.
    Type: Application
    Filed: August 16, 2023
    Publication date: March 28, 2024
    Inventors: Matthew A. Terrel, David S. Gere, Alexander F. Sugarbaker, Thomas C. Greening, Jason S. Pelc, Mark A. Arbore
  • Publication number: 20240094592
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Patent number: 11835836
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Publication number: 20230324286
    Abstract: Various embodiments disclosed herein describe optical measurement systems for characterizing a sample. The optical measurement systems may selectively emit light from different numbers of launch groups, and may include a multi-stage optical switch network that may be controlled to route light to a desired number of launch groups. The optical measurement systems may further measure light using a corresponding number of detector groups. The optical measurement systems may perform measurements using a plurality of different wavelengths, where different groups of these wavelengths may be measured using different numbers of launch groups (as well as corresponding detector groups).
    Type: Application
    Filed: March 14, 2023
    Publication date: October 12, 2023
    Inventors: Jason S. Pelc, Mark A. Arbore, Matthew A. Terrel, Thomas C. Greening, Yongming Tu, Lucia Gan
  • Publication number: 20230012376
    Abstract: Configurations for light source modules and methods for mitigating coherent noise are disclosed. The light source modules may include multiple light source sets, each of which may include multiple light sources. The light emitted by the light sources may be different wavelengths or the same wavelength depending on whether the light source module is providing redundancy of light sources, increased power, coherent noise mitigation, and/or detector mitigation. In some examples, the light source may emit light to a coupler or a multiplexer, which may then be transmitted to one or more multiplexers. In some examples, the light source modules provide one light output and in other examples, the light source modules provide two light outputs. The light source modules may provide light with approximately zero loss and the wavelengths of light may be close enough to spectroscopically equivalent respect to a sample and far enough apart to provide coherent noise mitigation.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Inventors: Mark Alan Arbore, Thomas C. Greening, Yongming Tu
  • Patent number: 10673260
    Abstract: The disclosed embodiments provide a charging system for a portable electronic device. The charging system includes a first bidirectional switching converter connected to a first power port of the portable electronic device, a low-voltage subsystem in the portable electronic device, and a high-voltage subsystem in the portable electronic device and a second bidirectional switching converter connected to a second power port of the portable electronic device, the low-voltage subsystem, and the high-voltage subsystem. The charging system also includes a control circuit that operates the first and second bidirectional switching converters to provide and receive power through the first and second power ports and convert an input voltage received through the first or second power port into a set of output voltages for charging an internal battery in the portable electronic device and powering the low-voltage subsystem and the high-voltage subsystem.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, Kamran M. Hasan, Edrick C. G. Wong
  • Patent number: 10666062
    Abstract: Systems and methods for power management are disclosed herein. In one disclosed embodiment, a battery charging system includes a battery charger for simultaneously charging a battery (and/or providing power to a system load) with multiple power sources, using a closed-loop charging servo target based on measurements taken by one or more gauges. In some embodiments, the multiple power sources may be utilized simultaneously according to a charging profile that specifies, e.g., one or more battery charging parameters, as well as according to determined priority levels for one or more of the multiple power sources coupled to the battery. In some embodiments, the priority level of a given power source is not fixed; rather, the priority level for the given power source may change based upon the characteristics of the given power source. In some embodiments, the priority levels for the multiple power sources are implemented using cascaded voltage target values.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: May 26, 2020
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, Kamran M. Hasan
  • Patent number: 10401435
    Abstract: A system for tracking the capacity of a battery in a portable electronic device is described. While the portable electronic device remains plugged in to a power adapter, the system estimates the capacity of the battery by performing the following operations. The system measures a first open-circuit voltage for the battery while the battery rests at a first state of charge. Next, the system causes the battery to transition to a second state of charge. While the battery transitions to the second state of charge, the system integrates a current through the battery to determine a net change in charge for the battery. Next, the system measures a second open-circuit voltage for the battery while the battery rests at the second state of charge. Finally, the system estimates a capacity for the battery based on the first open-circuit voltage, the second open-circuit voltage and the net change in charge. This capacity measurement is repeated and the multiple results are fit to a line.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: September 3, 2019
    Assignee: Apple Inc.
    Inventors: Nils E. Mattisson, P. Jeffrey Ungar, Thomas C. Greening, Jeffrey G. Koller
  • Patent number: 10236694
    Abstract: This disclosure describes a battery pack that includes a plurality of asymmetrical banks, with different capacities and/or voltages, and multiple taps, coupled to the corresponding banks, to power electrical loads. The battery pack also comprise a balancing circuit and a battery management unit. The battery pack may regulate voltages among the banks and/or balance the states of charge among the asymmetrical banks, by moving charges among the banks, by controlling one or more converters. The battery pack monitors the status of its banks and communicate with a host system via the battery management unit. Based on the monitored information and/or communication, the battery management unit generates control signals to drive the one or more converters.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 19, 2019
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, Karthik Kadirvel, Gary L. Stirk, Saroj K. Sahu, Kamran M. Hasan
  • Publication number: 20190013683
    Abstract: The disclosed embodiments provide a charging system for a portable electronic device. The charging system includes a first bidirectional switching converter connected to a first power port of the portable electronic device, a low-voltage subsystem in the portable electronic device, and a high-voltage subsystem in the portable electronic device and a second bidirectional switching converter connected to a second power port of the portable electronic device, the low-voltage subsystem, and the high-voltage subsystem. The charging system also includes a control circuit that operates the first and second bidirectional switching converters to provide and receive power through the first and second power ports and convert an input voltage received through the first or second power port into a set of output voltages for charging an internal battery in the portable electronic device and powering the low-voltage subsystem and the high-voltage subsystem.
    Type: Application
    Filed: August 24, 2018
    Publication date: January 10, 2019
    Inventors: Thomas C. Greening, Kamran M. Hasan, Edrick C. G. Wong
  • Patent number: 10097017
    Abstract: The disclosed embodiments provide a charging system for a portable electronic device. The charging system includes a first bidirectional switching converter connected to a first power port of the portable electronic device, a low-voltage subsystem in the portable electronic device, and a high-voltage subsystem in the portable electronic device and a second bidirectional switching converter connected to a second power port of the portable electronic device, the low-voltage subsystem, and the high-voltage subsystem. The charging system also includes a control circuit that operates the first and second bidirectional switching converters to provide and receive power through the first and second power ports and convert an input voltage received through the first or second power port into a set of output voltages for charging an internal battery in the portable electronic device and powering the low-voltage subsystem and the high-voltage subsystem.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 9, 2018
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, Kamran M. Hasan, Edrick C. G. Wong
  • Patent number: 10069319
    Abstract: Systems and methods for power management are disclosed herein. In one disclosed embodiment, a battery charging system includes a battery charger for simultaneously charging a battery (and/or providing power to a system load) with multiple power sources, using a closed-loop charging servo target based on measurements taken by one or more gauges. In some embodiments, the multiple power sources may be utilized simultaneously according to a charging profile that specifies, e.g., one or more battery charging parameters, as well as according to determined priority levels for one or more of the multiple power sources coupled to the battery. In some embodiments, the priority level of a given power source is not fixed; rather, the priority level for the given power source may change based upon the characteristics of the given power source. In some embodiments, the priority levels for the multiple power sources are implemented using cascaded voltage target values.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 4, 2018
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, Kamran M. Hasan
  • Patent number: 10044210
    Abstract: Some embodiments of the present invention provide a system that adaptively charges a battery, wherein the battery is a lithium-ion battery which includes a transport-limiting electrode governed by diffusion, an electrolyte separator and a non-transport-limiting electrode. During operation, the system determines a lithium surface concentration at an interface between the transport-limiting electrode and the electrolyte separator based on a diffusion time for lithium in the transport-limiting electrode. Next, the system calculates a charging current or a charging voltage for the battery based on the determined lithium surface concentration. Finally, the system applies the charging current or the charging voltage to the battery.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 7, 2018
    Assignee: Apple Inc.
    Inventors: Thomas C. Greening, P. Jeffrey Ungar, William C. Athas
  • Publication number: 20180205252
    Abstract: Systems and methods for power management are disclosed herein. In one disclosed embodiment, a battery charging system includes a battery charger for simultaneously charging a battery (and/or providing power to a system load) with multiple power sources, using a closed-loop charging servo target based on measurements taken by one or more gauges. In some embodiments, the multiple power sources may be utilized simultaneously according to a charging profile that specifies, e.g., one or more battery charging parameters, as well as according to determined priority levels for one or more of the multiple power sources coupled to the battery. In some embodiments, the priority level of a given power source is not fixed; rather, the priority level for the given power source may change based upon the characteristics of the given power source. In some embodiments, the priority levels for the multiple power sources are implemented using cascaded voltage target values.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 19, 2018
    Inventors: Thomas C. Greening, Kamran M. Hasan
  • Publication number: 20180102664
    Abstract: The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system provides a charging circuit for converting an input voltage from a power source into a set of output voltages for charging the battery and powering a low-voltage subsystem and a high-voltage subsystem in the portable electronic device. Upon detecting discharging of the battery in a low-voltage state, the system uses the charging circuit to directly power the low-voltage subsystem from a battery voltage of the battery and up-convert the battery voltage to power the high-voltage subsystem.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 12, 2018
    Inventors: Thomas C. Greening, Qing Liu, William C. Athas
  • Publication number: 20180034288
    Abstract: This disclosure describes a battery pack that includes a plurality of asymmetrical banks, with different capacities and/or voltages, and multiple taps, coupled to the corresponding banks, to power electrical loads. The battery pack also comprise a balancing circuit and a battery management unit. The battery pack may regulate voltages among the banks and/or balance the states of charge among the asymmetrical banks, by moving charges among the banks, by controlling one or more converters. The battery pack monitors the status of its banks and communicate with a host system via the battery management unit. Based on the monitored information and/or communication, the battery management unit generates control signals to drive the one or more converters.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Inventors: Thomas C. Greening, Karthik Kadirvel, Gary L. Stirk, Saroj K. Sahu, Kamran M. Hasan
  • Publication number: 20170288421
    Abstract: Systems and methods for power management are disclosed. In an embodiment, a battery charging system includes closed-loop control of a battery charger using a servo target based on measurements taken by a battery gauge.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 5, 2017
    Inventor: Thomas C. Greening
  • Publication number: 20170264122
    Abstract: Systems and methods for power management are disclosed herein. In one disclosed embodiment, a battery charging system includes a battery charger for simultaneously charging a battery (and/or providing power to a system load) with multiple power sources, using a closed-loop charging servo target based on measurements taken by one or more gauges. In some embodiments, the multiple power sources may be utilized simultaneously according to a charging profile that specifies, e.g., one or more battery charging parameters, as well as according to determined priority levels for one or more of the multiple power sources coupled to the battery. In some embodiments, the priority level of a given power source is not fixed; rather, the priority level for the given power source may change based upon the characteristics of the given power source. In some embodiments, the priority levels for the multiple power sources are implemented using cascaded voltage target values.
    Type: Application
    Filed: March 29, 2016
    Publication date: September 14, 2017
    Inventors: Thomas C. Greening, Kamran M. Hasan
  • Patent number: 9722283
    Abstract: The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system obtains a voltage of the battery and a state-of-charge of the battery and calculates an effective C-rate of the battery using the voltage and the state-of-charge. Next, the system uses the effective C-rate to estimate an inaccessible capacity of the battery. Finally, the system manages use of the battery with the portable electronic device based on the inaccessible capacity.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 1, 2017
    Assignee: Apple Inc.
    Inventors: Jeffrey G. Koller, Nils E. Mattisson, Thomas C. Greening, P. Jeffrey Ungar
  • Publication number: 20170146605
    Abstract: A system for tracking the capacity of a battery in a portable electronic device is described. While the portable electronic device remains plugged in to a power adapter, the system estimates the capacity of the battery by performing the following operations. The system measures a first open-circuit voltage for the battery while the battery rests at a first state of charge. Next, the system causes the battery to transition to a second state of charge. While the battery transitions to the second state of charge, the system integrates a current through the battery to determine a net change in charge for the battery. Next, the system measures a second open-circuit voltage for the battery while the battery rests at the second state of charge. Finally, the system estimates a capacity for the battery based on the first open-circuit voltage, the second open-circuit voltage and the net change in charge. This capacity measurement is repeated and the multiple results are fit to a line.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 25, 2017
    Inventors: Nils E. Mattisson, P. Jeffrey Ungar, Thomas C. Greening, Jeffrey G. Koller