Patents by Inventor Thomas CABOUT

Thomas CABOUT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230378311
    Abstract: A method of manufacturing a PN junction includes successive steps for: forming at least one trench in a semiconductor substrate of a first conductivity type; and filling the at least one trench with a semiconductor material of a second conductivity type, different from the first conductivity type.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 23, 2023
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Guillaume GUIRLEO, Abderrezak MARZAKI, Thomas CABOUT
  • Publication number: 20220131005
    Abstract: An integrated circuit includes a semiconductor substrate having a first type of conductivity and a semiconductor component. The semiconductor component includes: a buried semiconductor region having a second type of conductivity opposite to the first type of conductivity; a first gate region and a second gate region each extending in depth from a front face of the semiconductor substrate to the buried semiconductor region; a third gate region extending in depth from the front face of the semiconductor substrate and being electrically connected to the buried semiconductor region; and an active area delimited by the first gate region, the second gate region and the buried semiconductor region.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 28, 2022
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Benoit FROMENT, Thomas CABOUT
  • Patent number: 11139303
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 5, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Grolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel, Quentin Hubert, Thomas Cabout
  • Patent number: 11081488
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: August 3, 2021
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel, Quentin Hubert, Thomas Cabout
  • Publication number: 20210005612
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak MARZAKI, Arnaud REGNIER, Stephan NIEL, Quentin HUBERT, Thomas CABOUT
  • Publication number: 20210005613
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak MARZAKI, Arnaud REGNIER, Stephan NIEL, Quentin HUBERT, Thomas CABOUT
  • Patent number: 10818669
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 27, 2020
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak Marzaki, Arnaud Regnier, Stephan Niel, Quentin Hubert, Thomas Cabout
  • Publication number: 20190067291
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak MARZAKI, Arnaud REGNIER, Stephan NIEL, Quentin HUBERT, Thomas CABOUT
  • Patent number: 9263129
    Abstract: A method for determining programming parameters for programming a resistive random access memory switching from an OFF state to an ON state, the method including determining retention curves representing the increase in the ON state resistance as a function of time, for a given programming temperature and a given current limitation; determining a retention failure time for each of the retention curves; determining curves representing the decrease in the retention failure time as a function of the programming temperature, for a given current limitation; for at least one given programming temperature, determining, from the curves representing the decrease in the retention failure time, a current limiting value to be applied to the resistive random access memory in order to obtain a target retention failure time.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: February 16, 2016
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Thomas Cabout, Elisa Vianello
  • Publication number: 20150332764
    Abstract: A method for determining programming parameters for programming a resistive random access memory switching from an OFF state to an ON state, the method including determining retention curves representing the increase in the ON state resistance as a function of time, for a given programming temperature and a given current limitation; determining a retention failure time for each of the retention curves; determining curves representing the decrease in the retention failure time as a function of the programming temperature, for a given current limitation; for at least one given programming temperature, determining, from the curves representing the decrease in the retention failure time, a current limiting value to be applied to the resistive random access memory in order to obtain a target retention failure time.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 19, 2015
    Inventors: Thomas CABOUT, Elisa VIANELLO