Patents by Inventor Thomas Chmielewski

Thomas Chmielewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931602
    Abstract: A system including a diagnostic-quality CT scanner for imaging a patient, the diagnostic-quality CT scanner having an imaging isocenter and a radiation therapy device positioned adjacent the diagnostic-quality CT scanner, the radiation therapy device including a gantry carrying a radiation therapy beam source and having a radiation therapy isocenter separate from the imaging isocenter of the diagnostic-quality CT scanner. The system including a couch configured to position the patient for imaging and for radiation therapy by translating the patient between the diagnostic quality CT scanner and the radiation therapy device.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Viewray Technologies, Inc.
    Inventors: Iwan Kawrykow, Thomas Chmielewski, James F. Dempsey
  • Patent number: 11642040
    Abstract: A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: May 9, 2023
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: Thomas Chmielewski, James F. Dempsey
  • Publication number: 20230041633
    Abstract: RF coil assemblies are disclosed that include multiturn loops formed of conductors configured to receive RF signals from a patient during MRI. The multiturn loops include an inner loop and an outer loop that both lie substantially in a plane of the RF coil assembly. The inner loop is at least partially nested within the outer loop.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 9, 2023
    Applicant: ViewRay Technologies, Inc.
    Inventors: Thomas Chmielewski, Steven Koenig
  • Patent number: 11353535
    Abstract: Apparatuses, methods, and computer program products for reducing an appearance of an artifact in an image generated by a magnetic resonance imaging (MRI) system are disclosed. The apparatus includes a magnetic field generating device configured to create an inhomogeneity in the magnetic field of an MRI system and prevent at least one out-of-field excitation during imaging.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 7, 2022
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: Thomas Chmielewski, Shmaryu M. Shvartsman
  • Publication number: 20210356539
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Application
    Filed: June 10, 2021
    Publication date: November 18, 2021
    Applicant: ViewRay Technologies, Inc.
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Publication number: 20210298630
    Abstract: A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Applicant: ViewRay Technologies, Inc.
    Inventors: Thomas Chmielewski, James F. Dempsey
  • Publication number: 20210220676
    Abstract: A system including a diagnostic-quality CT scanner for imaging a patient, the diagnostic-quality CT scanner having an imaging isocenter and a radiation therapy device positioned adjacent the diagnostic-quality CT scanner, the radiation therapy device including a gantry carrying a radiation therapy beam source and having a radiation therapy isocenter separate from the imaging isocenter of the diagnostic-quality CT scanner. The system including a couch configured to position the patient for imaging and for radiation therapy by translating the patient between the diagnostic quality CT scanner and the radiation therapy device.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 22, 2021
    Applicant: ViewRay Technologies, Inc.
    Inventors: Iwan Kawrykow, Thomas Chmielewski, James F. Dempsey
  • Patent number: 11045108
    Abstract: A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: June 29, 2021
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: Thomas Chmielewski, James F. Dempsey
  • Patent number: 11035916
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: June 15, 2021
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Patent number: 11000706
    Abstract: A system including a diagnostic-quality CT scanner for imaging a patient, the diagnostic-quality CT scanner having an imaging isocenter and a radiation therapy device positioned adjacent the diagnostic-quality CT scanner, the radiation therapy device including a gantry carrying a radiation therapy beam source and having a radiation therapy isocenter separate from the imaging isocenter of the diagnostic-quality CT scanner. The system including a couch configured to position the patient for imaging and for radiation therapy by translating the patient between the diagnostic quality CT scanner and the radiation therapy device.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: May 11, 2021
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: Iwan Kawrykow, Thomas Chmielewski, James F. Dempsey
  • Publication number: 20200140225
    Abstract: Systems for guiding line(s) including blocks through which the line(s) run. The blocks can include inner and outer guides with line running through both the inner and outer guides. The guides may include rollers, and an inner guide may be at least partially nested within an outer guide. The systems may be configured so that at least one of the blocks can move when the line moves and so that the first block and second block create tension in the line.
    Type: Application
    Filed: October 28, 2019
    Publication date: May 7, 2020
    Applicant: ViewRay Technologies, Inc.
    Inventors: Thomas CHMIELEWSKI, Gerald E. FOUGHT
  • Patent number: 10557902
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: February 11, 2020
    Assignee: Case Western Reserve University
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvartsman, Thomas Chmielewski, Timothy Eagan
  • Patent number: 10466319
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: November 5, 2019
    Assignee: VIEWRAY TECHNOLOGIES, INC.
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Publication number: 20190331746
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: ViewRay Technologies, Inc.
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Publication number: 20180275238
    Abstract: Apparatuses, methods, and computer program products for reducing an appearance of an artifact in an image generated by a magnetic resonance imaging (MRI) system are disclosed. The apparatus includes a magnetic field generating device configured to create an inhomogeneity in the magnetic field of an MRI system and prevent at least one out-of-field excitation during imaging.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 27, 2018
    Applicant: ViewRay Technologies, Inc.
    Inventors: Thomas Chmielewski, Shmaryu M. Shvartsman
  • Publication number: 20180161602
    Abstract: A system including a diagnostic-quality CT scanner for imaging a patient, the diagnostic-quality CT scanner having an imaging isocenter and a radiation therapy device positioned adjacent the diagnostic-quality CT scanner, the radiation therapy device including a gantry carrying a radiation therapy beam source and having a radiation therapy isocenter separate from the imaging isocenter of the diagnostic-quality CT scanner. The system including a couch configured to position the patient for imaging and for radiation therapy by translating the patient between the diagnostic quality CT scanner and the radiation therapy device.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 14, 2018
    Applicant: ViewRay Technologies, Inc.
    Inventors: Iwan Kawrykow, Thomas Chmielewski, James F. Dempsey
  • Publication number: 20170052236
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 23, 2017
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Patent number: 9404983
    Abstract: A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 2, 2016
    Assignee: ViewRay, Incorporated
    Inventors: James F. Dempsey, Thomas Chmielewski
  • Publication number: 20160146911
    Abstract: A radiofrequency receive coil assembly can include a first conductive loop and a second conductive loop electrically connected at a node. The first and second conductive loops can extend into a treatment beam region of the radio frequency receive coil assembly through which one or more beams of ionizing radiation pass. The first conductive loop and the second conductive loop can overlap each other to provide electromagnetic isolation and/or can use a common conductor combined with a shared capacitor to provide electromagnetic isolation, with the shared capacitor or other electrical components, as well as any conductive loop overlaps, being positioned outside of the treatment beam region. These features can, among other possible advantages, minimize and homogenize attenuation of the beams of ionizing radiation by the radiofrequency receive coil assembly.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Thomas Chmielewski, James F. Dempsey
  • Publication number: 20150212174
    Abstract: Radio frequency (RF) shields used with magnetic resonance imaging (MRI) apparatus may experience gradient field induced eddy currents and RF field induced eddy currents. These eddy currents can cause the RF shield to heat up at an undesirable rate. RF shields are designed to have a desired degree of RF shielding and a desired heating attribute. Design goals for RF shields include gradient field transparency and RF field opacity, both of which can be influenced by eddy currents. Example methods identify a gradient field that will induce eddy currents and identify an RF field that will induce eddy currents. If a region on the RF shield is identified where the desired heating attribute will not be achieved, then a pattern of axial cuts and azimuthal cuts can be made in the RF shield to reduce gradient eddy current heating in the RF shield while maintaining desired RF shielding.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventors: Robert W. Brown, Yong Wu, Zhen Yao, Shmaryu Shvartsman, Thomas Chmielewski, Timothy Eagan