Patents by Inventor Thomas Clark Pearson

Thomas Clark Pearson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127540
    Abstract: A method of aligning images for 3D imaging of a sample includes, for each of multiple cameras located around a vessel, activating a respective light source that provides backlighting for the vessel, and capturing a respective 2D calibration image of the vessel. The method also includes, for each 2D calibration image, measuring a respective vertical position, horizontal position, and rotation of the image, in part by detecting edges of the vessel as depicted in the image. The method also includes generating calibration data based on the measured vertical positions, horizontal positions, and rotations for the respective 2D calibration images, capturing, by each camera, a respective set of 2D images of the sample in the vessel, and digitally resampling, using the calibration data, at least one of the respective sets of 2D images to correct for vertical offset, horizontal offset, and rotational offset of the set(s) of 2D images.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: Graham F. Milne, Dmitry Fradkin, Thomas Clark Pearson
  • Publication number: 20240095983
    Abstract: Various techniques facilitate the development of an image library that can be used to train and/or validate an automated visual inspection (AVI) model, such an AVI neural network for image classification. In one aspect, an arithmetic transposition algorithm is used to generate synthetic images from original images by transposing features (e.g., defects) onto the original images, with pixel-level realism. In other aspects, digital inpainting techniques are used to generate realistic synthetic images from original images. Deep learning-based inpainting techniques may be used to add, remove, and/or modify defects or other depicted features. In still other aspects, quality control techniques are used to assess the suitability of image libraries for training and/or validation of AVI models, and/or to assess whether individual images are suitable for inclusion in such libraries.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 21, 2024
    Inventors: Al Patrick Goodwin, Joseph Peter Bernacki, Graham F. Milne, Thomas Clark Pearson, Aman Mahendra Jain, Jordan Ray Fine, Kenneth E. Hampshire, Aik Jun Tan, Osvaldo Perez Varela, Nishant Mukesh Gadhvi
  • Patent number: 11900540
    Abstract: A method for 3D imaging of a sample, in a vessel having a longitudinal axis orthogonal to a horizontal plane, includes capturing, by at least three cameras located at different positions around the vessel, respective 2D images of the sample. Each image comprises pixels having associated pixel values. The optical axis of a first camera is inclined or declined at a first angle relative to the horizontal plane, with the first angle being greater than or equal to zero degrees. The optical axis of a second camera is inclined or declined at a second, larger angle relative to the horizontal plane. The method also includes generating a 3D image of the sample based on the pixel values associated with the 2D image pixels, and one or more look-up tables that collectively indicate, for pixels in each image, expected paths for light traversing the vessel and the sample.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 13, 2024
    Assignee: AMGEN INC.
    Inventors: Graham F. Milne, Dmitry Fradkin, Thomas Clark Pearson
  • Patent number: 11874233
    Abstract: In a method for imaging a container holding a sample, the container is illuminated with a laser sheet of a first color, and one or more images of the container are capturing by a first imager configured to filter out colors other than the first color. Simultaneously with illuminating the container with the laser sheet of the first color, the container is illuminated with light of a second color different than the first color, wherein the light of the second color illuminates at least a majority of an entire volume of the container. One or more additional imagers of the container are captured by a second imager configured to filter out colors other than the second color. The one or more images and the one or more additional images are analyzed to detect particles within, and/or on an exterior surface of, the container.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: January 16, 2024
    Assignee: AMGEN INC.
    Inventors: Thomas Clark Pearson, Graham F. Milne, Dmitry Fradkin, Erwin Freund
  • Publication number: 20230398577
    Abstract: A robotic inspection platform comprises a robotic arm, an imager, and a controller. The controller causes the robotic arm to retrieve, using its end effector, a container, and to manipulate the container such that the container is sequentially placed in a plurality of orientations while in view of the imager. The controller also causes the imager to capture images, with each of the images being captured while the container is in a respective one of the orientations. The controller also determines one or more attributes of the container, and/or a sample within the container, by analyzing the images using a pattern recognition model and, based on the attribute(s), determines whether the container and/or sample satisfies one or more criteria. If the container and/or sample fails to satisfy the criteria, the controller causes the robotic arm to place the container in an area (e.g., bin) reserved for rejected containers and/or samples.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 14, 2023
    Inventors: Dmitry Fradkin, Thomas Clark Pearson, Neelima Chavali, Erwin Freund
  • Patent number: 11733251
    Abstract: Methods and systems of performing an assay. A system for performing an assay includes an enclosure defining a temperature-controlled space. An imaging system, an actuator and a dispenser are disposed within the space. The actuator receives a well plate having wells. The actuator is to move the well plate relative to the imaging system to enable the imaging system to obtain image data of one of the wells. The dispenser includes a pump, an outlet and a reservoir holder to receive a reservoir containing a compound. The pump is to be fluidly coupled to the reservoir and an outlet. The pump is to pump the compound from the reservoir through the outlet into one of the wells. The system also includes a controller. The controller is to cause the dispenser to dispense the compound into the first one of the wells while the imaging system obtains the image data.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: August 22, 2023
    Assignee: AMGEN INC.
    Inventors: Brandon Zachary Sarich, Michael R. Berke, Chuck Z. Li, Thomas Clark Pearson
  • Publication number: 20230139131
    Abstract: In a method for imaging a container holding a sample, the container is illuminated with a laser sheet of a first color, and one or more images of the container are capturing by a first imager configured to filter out colors other than the first color. Simultaneously with illuminating the container with the laser sheet of the first color, the container is illuminated with light of a second color different than the first color, wherein the light of the second color illuminates at least a majority of an entire volume of the container. One or more additional imagers of the container are captured by a second imager configured to filter out colors other than the second color. The one or more images and the one or more additional images are analyzed to detect particles within, and/or on an exterior surface of, the container.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Inventors: Thomas Clark Pearson, Graham F. Milne, Dmitry Fradkin, Erwin Freund
  • Patent number: 11592403
    Abstract: In a method for imaging a container holding a sample, the container is illuminated with a laser sheet that impinges upon the container in a first direction corresponding to a first axis. A plane of the laser sheet is defined by the first axis and a second axis orthogonal to the first axis. The method also includes capturing, by a camera having an imaging axis that is substantially orthogonal to at least the first axis, an image of the container. The method further includes analyzing, by one or more processors, the image of the container to detect particles within, and/or on an exterior surface of, the container.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 28, 2023
    Assignee: AMGEN INC.
    Inventors: Thomas Clark Pearson, Graham F. Milne, Dmitry Fradkin, Erwin Freund
  • Publication number: 20230058276
    Abstract: The disclosure provides methods of purifying native and recombinant biomolecules, e.g., proteins, from mammalian cells using purification protocols incorporating harvest recovery operations involving decanter centrifugation of at least one target biomolecule from at least one particulate component of cell culture fluid. The unexpected capacity of decanter centrifuge separation of biological materials of similar densities found in mammalian cell culture fluid has been found to yield high quantities of functional protein in efficient, low-cost harvest recovery steps of biomolecule purification protocols.
    Type: Application
    Filed: January 22, 2021
    Publication date: February 23, 2023
    Inventors: Thomas Clark Pearson, Sarah Whetstone, Jeremy S. Conner
  • Publication number: 20220230394
    Abstract: A method for 3D imaging of a sample, in a vessel having a longitudinal axis orthogonal to a horizontal plane, includes capturing, by at least three cameras located at different positions around the vessel, respective 2D images of the sample. Each image comprises pixels having associated pixel values. The optical axis of a first camera is inclined or declined at a first angle relative to the horizontal plane, with the first angle being greater than or equal to zero degrees. The optical axis of a second camera is inclined or declined at a second, larger angle relative to the horizontal plane. The method also includes generating a 3D image of the sample based on the pixel values associated with the 2D image pixels, and one or more look-up tables that collectively indicate, for pixels in each image, expected paths for light traversing the vessel and the sample.
    Type: Application
    Filed: June 2, 2020
    Publication date: July 21, 2022
    Inventors: Graham F. Milne, Dmitry Fradkin, Thomas Clark Pearson
  • Publication number: 20220057336
    Abstract: In a method for imaging a container holding a sample, the container is illuminated with a laser sheet that impinges upon the container in a first direction corresponding to a first axis. A plane of the laser sheet is defined by the first axis and a second axis orthogonal to the first axis. The method also includes capturing, by a camera having an imaging axis that is substantially orthogonal to at least the first axis, an image of the container. The method further includes analyzing, by one or more processors, the image of the container to detect particles within, and/or on an exterior surface of, the container.
    Type: Application
    Filed: December 16, 2019
    Publication date: February 24, 2022
    Inventors: Thomas Clark Pearson, Graham F. Milne, Dmitry Fradkin, Erwin Freund
  • Patent number: 10962756
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 30, 2021
    Assignee: AMGEN INC.
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Publication number: 20200338271
    Abstract: Fill-finish assemblies facilitating the manufacture of a drug delivery device are disclosed. The fill-finish assembly may include a container, an insertion mechanism, a fluid pathway connection assembly disposed between the container and the insertion mechanism, and a carrier. The insertion mechanism may include a delivery member and an insertion mechanism housing. The insertion mechanism may be configured to move the delivery member from a retracted position inside the insertion mechanism housing to a deployed position outside the insertion mechanism housing. The fluid pathway connection assembly may be selectively activatable to establish fluid communication between the container and the delivery member. The carrier may have a hollow interior containing at least a portion of each of the container, the insertion mechanism, and the fluid pathway connection assembly.
    Type: Application
    Filed: November 6, 2018
    Publication date: October 29, 2020
    Applicant: AMGEN INC.
    Inventors: Justin Harris, Matthew Wayne Janke, Wael Mismar, Jerome Olivas, Thomas Clark Pearson, Sudeshna Dutta Ray, Ryan M. Agard, Alexis Dechelette, Michael Gammelager, Mads Hansen, Valerio Mazzon, Owen Ryan, Clive Smith
  • Publication number: 20200249248
    Abstract: Methods and systems of performing an assay. A system for performing an assay includes an enclosure defining a temperature-controlled space. An imaging system, an actuator and a dispenser are disposed within the space. The actuator receives a well plate having wells. The actuator is to move the well plate relative to the imaging system to enable the imaging system to obtain image data of one of the wells. The dispenser includes a pump, an outlet and a reservoir holder to receive a reservoir containing a compound. The pump is to be fluidly coupled to the reservoir and an outlet. The pump is to pump the compound from the reservoir through the outlet into one of the wells. The system also includes a controller. The controller is to cause the dispenser to dispense the compound into the first one of the wells while the imaging system obtains the image data.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 6, 2020
    Inventors: Brandon Zachary Sarich, Michael R. Berke, Chuck Z. Li, Thomas Clark Pearson
  • Publication number: 20200142172
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Application
    Filed: December 10, 2019
    Publication date: May 7, 2020
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Patent number: 10539773
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: January 21, 2020
    Assignee: AMGEN INC.
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Publication number: 20190011688
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 10, 2019
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Patent number: 10088660
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 2, 2018
    Assignee: AMGEN INC.
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Publication number: 20180231760
    Abstract: A system is described to facilitate the characterization of particles within a fluid contained in a vessel using an illumination system that directs source light through each vessel. One or more optical elements may be implemented to refract the source light and to illuminate the entire volume of the vessel. As the refracted source light passes through the vessel and interacts with particles suspended in the fluid, scattered light is produced and directed to an imager, while the refracted source light is diverted away from the imager to prevent the source light from drowning out the scattered light. The system can therefore advantageously utilize an imager with a large depth of field to accurately image the entire volume of fluid at the same time, facilitating the determination of the number and size of particles suspended in the fluid.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 16, 2018
    Inventors: Dmitry Fradkin, Graham F. Milne, Thomas Clark Pearson
  • Patent number: 9881367
    Abstract: An automated visual inspection (AVI) system is described to measure the depth of plungers positioned within vessels. The AVI system implements various types of image processing as well as other techniques to identify, for a vessel, a reference point and the uppermost edge of the plunger. Because different inconsistencies and/or artifacts may be introduced within the vessel image, different processing techniques may be executed on the region containing the reference point versus the plunger region. In doing so, the AVI system provides a robust means to accurately measure plunger depth that is highly resilient to the aforementioned artifacts and consistently measures plunger depth for a wide variety and types of vessels.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: January 30, 2018
    Assignee: AMGEN INC.
    Inventors: Graham F. Milne, Thomas Clark Pearson, Erwin Freund