Patents by Inventor Thomas Clemente

Thomas Clemente has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10577617
    Abstract: The impact of plastid size change in both monocot and dicot plants has been examined. In both, when plastid size is increased there is an increase in biomass relative to the parental lines. Thus, provided herein are methods for increasing the biomass of a plant, comprising decreasing the expression of at least one plastid division protein in a plant. Optionally, the level of chlorophyll in the plant is also reduced.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: March 3, 2020
    Assignees: The Board of Trustees of the University of Illinois, The United States of America, as Represented by the Secretary of Agriculture, The Board of Regents of the University of Nebraska, The University of Florida Research Foundation, Incorporated
    Inventors: Aleel K. Grennan, Donald R. Ort, Stephen Patrick Moose, Damla D. Bilgin, Thomas Clemente, Fredy Altpeter, Stephen P. Long
  • Publication number: 20160289694
    Abstract: The impact of plastid size change in both monocot and dicot plants has been examined. In both, when plastid size is increased there is an increase in biomass relative to the parental lines. Thus, provided herein are methods for increasing the biomass of a plant, comprising decreasing the expression of at least one plastid division protein in a plant. Optionally, the level of chlorophyll in the plant is also reduced.
    Type: Application
    Filed: January 13, 2016
    Publication date: October 6, 2016
    Inventors: Aleel K. Grennan, Donald R. Ort, Stephen Patrick Moose, Damla D. Bilgin, Thomas Clemente, Fredy Altpeter, Stephen P. Long
  • Publication number: 20080015110
    Abstract: The invention provides a modified variant of dicamba monooxygenase (DMO). The invention relates to the unexpected finding that cells expressing this DMO exhibit high levels of tolerance to the herbicide dicamba. Compositions comprising DMO-encoding nucleic acids and methods of use are provided.
    Type: Application
    Filed: June 5, 2007
    Publication date: January 17, 2008
    Inventors: Thomas Clemente, Razvan Dumitru, Paul Feng, Stanislaw Flasinski, Donald Weeks
  • Publication number: 20060265786
    Abstract: A Gram-negative bacterium useful for genetically engineering plants is provided. The Gram-negative bacterium contains, as part of genome, an inducible regulatory sequence operatively linked to a nucleotide sequence encoding a levansucrase. Alternatively, the Gram-negative bacterium comprises a recombinant nucleic acid construct containing an inducible regulatory sequence operatively linked to a nucleotide sequence encoding a levansucrase. Also provided are recombinant nucleic acid constructs comprising an inducible regulatory sequence operatively coupled to a nucleotide sequence encoding a levansucrase and a method for transforming plants using the Gram-negative bacterium of the present invention.
    Type: Application
    Filed: March 21, 2006
    Publication date: November 23, 2006
    Inventors: Stephen Farrand, Paul Staswick, Thomas Clemente