Patents by Inventor Thomas Croft

Thomas Croft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110197947
    Abstract: Provided are novel interconnect wire network assemblies and methods of fabricating thereof. An assembly may include conductive portions/individual wires that, in certain embodiments, are substantially parallel to each other. The assembly also includes two or more carrier films (i.e., the front side and back side films) attached to opposite sides of the wires. The films are typically attached along the wire ends. The films are made from electrically insulating materials and at least the front side film is substantially transparent. The front side film is used to attach the wires to a photovoltaic surface of one cell, while the back side film is used for attachment to a substrate surface of another cell. These attachments electrically interconnect the two cells in series. In certain embodiments, one or both carrier films extend beyond two end wires and form insulated portions that allow much closer arrangements of the cells in a module.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 18, 2011
    Applicant: MIASOLE
    Inventor: Steven Thomas Croft
  • Publication number: 20110192448
    Abstract: A solar-cell module. The solar-cell module includes a plurality of solar cells that are electrically coupled together. The solar-cell module further includes an in-laminate-diode assembly electrically coupled with the plurality of solar cells. The in-laminate-diode assembly is configured to prevent power loss. The solar-cell module also includes a protective structure at least partially encapsulating the plurality of solar cells. In addition, the solar-cell module includes a plurality of external-connection mechanisms mounted to a respective plurality of edge regions of the protective structure. An external-connection mechanism of the plurality of external-connection mechanisms is configured to enable collection of current from the plurality of solar cells and to allow interconnection with at least one other external device.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 11, 2011
    Applicant: MIASOLE
    Inventors: Steven Thomas Croft, William James McColl, Shawn Everson, Jason Stephen Corneille, Kent Whitfield, Todd Krajewski, Darin Britwhistle
  • Publication number: 20110146778
    Abstract: A method and apparatus for protecting a diode assembly of a photovoltaic module from compressive and tensile forces by providing at least one interior shielding element are provided. According to various embodiments, a photovoltaic module including a first encasing layer, a second encasing layer, at least one photovoltaic cell disposed between the first and second encasing layers, at least one shielded diode assembly disposed on the at least one photovoltaic cell and electrically connected to the at least one photovoltaic cell, and a pottant disposed between the at least one photovoltaic cell and the second encasing layer is provided. A localized shielding element may be used to shield the diode assembly.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Applicant: MIASOLE
    Inventors: Steven Thomas Croft, Kedar Hardikar, Whitfield Gardner Halstead, Shawn Everson
  • Publication number: 20100258982
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258542
    Abstract: Provided herein are methods of polishing, cleaning and texturing back contacts of thin-film solar cells. According to various embodiments, the methods involve irradiating sites on the back contact with laser beams to remove contaminants and/or smooth the surface of the back contact. The back contact, e.g., a molybdenum, copper, or niobium thin-film, is smoothed prior to deposition of the absorber and other thin-films of the photovoltaic stack. In certain embodiments, laser polishing of the back contact is used to enhance the diffusion barrier characteristics of the back contact layer, with all or a surface layer of the back contact becoming essentially amorphous. In certain embodiments, the adhesion of the absorber layer is enhanced by the textured back contact and by the presence of the amorphous metal at the deposition surface.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258185
    Abstract: Provided herein are textured substrates for thin-film solar cells. According to various embodiments, the textured substrates are characterized by substrate patterns exhibiting low-frequency roughness or flatness and long range order. The substrates may be metallic or non-metallic substrates, and in certain embodiments are stainless steel foils. According to various embodiments, the substrates may be provided in the form of a web, ready for deposition of thin-film photovoltaic stacks. Also provided are textured back contact thin films.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100255630
    Abstract: Provided herein are methods of incorporating additives into thin-film solar cell substrates and back contacts. In certain embodiments, sodium is incorporated into a substrate or a back contact of a thin-film photovoltaic stack where it can diffuse into a CIGS or other absorber layer to improve efficiency and/or growth of the layer. The methods involve laser treating the substrate or back contact in the presence of a sodium (or sodium-containing) solid or vapor to thereby incorporate sodium into the surface of the substrate or back contact. In certain embodiments, the surface is simultaneously smoothed.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 7, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100043863
    Abstract: An interconnect assembly. The interconnect assembly includes a trace that includes a plurality of electrically conductive portions. The plurality of electrically conductive portions is configured both to collect current from a first solar cell and to interconnect electrically to a second solar cell. In addition, the plurality of electrically conductive portions is configured such that solar-cell efficiency is substantially undiminished in an event that any one of the plurality of electrically conductive portions is conductively impaired.
    Type: Application
    Filed: September 24, 2009
    Publication date: February 25, 2010
    Applicant: MIASOLE
    Inventors: Mulugeta Zerfu Wudu, Jason Stephen Corneille, Steven Thomas Croft, Steven Douglas Flanders, William James McColl
  • Publication number: 20100043862
    Abstract: A solar panel interconnection system in which electrical interconnection distance is minimized irrespective of one of landscape or portrait panel orientation includes a first solar panel having first diagonally opposed corners, a first edge, a second edge and a tap to provide electrical connectivity thereto, and a second solar panel having second diagonally opposed corners, a first edge, a second edge and a tap to provide electrical connectivity thereto. The first edge and the second edge of the first solar panel extend from one of the first diagonally opposed corners and the tap on the first solar panel is disposed at the same corner thereof. The first edge and the second edge of the second solar panel extend from one of the second diagonally opposed corners and the tap on the second solar panel is disposed at the same corner thereof.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 25, 2010
    Inventor: Steven Thomas Croft
  • Publication number: 20090283137
    Abstract: A solar-cell module. The solar-cell module includes a plurality of solar cells that are electrically coupled together. The solar-cell module further includes an in-laminate-diode assembly electrically coupled with the plurality of solar cells. The in-laminate-diode assembly is configured to prevent power loss. The solar-cell module also includes a protective structure at least partially encapsulating the plurality of solar cells. In addition, the solar-cell module includes a plurality of external-connection mechanisms mounted to a respective plurality of edge regions of the protective structure. An external-connection mechanism of the plurality of external-connection mechanisms is configured to enable collection of current from the plurality of solar cells and to allow interconnection with at least one other external device.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Inventors: Steven Thomas Croft, William James McColl, Shawn Everson, Jason Stephan Corneille, Kent Whitfield, Todd Krajewski, Darin Britwhistle
  • Publication number: 20090235979
    Abstract: An interconnect assembly. The interconnect assembly includes a trace that includes a plurality of electrically conductive portions. The plurality of electrically conductive portions is configured both to collect current from a first solar cell and to interconnect electrically to a second solar cell. In addition, the plurality of electrically conductive portions is configured such that solar-cell efficiency is substantially undiminished in an event that any one of the plurality of electrically conductive portions is conductively impaired.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Mulugeta Zerfu Wudu, Jason Stephan Corneille, Steven Thomas Croft, Steven Douglas Flanders, William James McColl
  • Publication number: 20090229666
    Abstract: A method for smoothing the surface of a metallic substrate. The method includes providing a metallic substrate and smoothing a surface of the metallic substrate by irradiating the surface with a high-intensity energy source, such that the surface is smoothed to remove defects from the surface by creating an altered surface layer. The altered surface layer is configured to receive at least one layer in a fabrication process of an electronic device.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 17, 2009
    Inventors: Jason Stephan Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Patent number: 6491062
    Abstract: A remotely controlled water line shut off system having particular utility as a convenient means to avoid internal water damage to a dwelling, or to the excessive use of water through a sprinkler system, where the dwelling is not occupied continuously, such as a summer rental. System includes a housing or enclosure mounted between a water intake and water discharge lines, where the housing includes a water meter, a water cut off valve, a preset quantity control metering mechanism, a solid state radio transceiver, and an electrical power source, where controlling thereof may be by wireless communication with the solid state radio transceiver.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: December 10, 2002
    Inventor: Thomas Croft
  • Patent number: 4047946
    Abstract: An ion modulator such as a three-layered structure, formed by sandwiching a photoconductor between a metal screen and an insulating layer, which is used as an image source. The apparatus includes an optical system for projecting an image of a graphic original onto the modulator and creating a charge distribution system thereon that can be retained for long periods of time. As part of the apparatus there is included a special drum formed by adhering a resilient-rubber like layer having a compliance that produces a displacement from the normal surface in the range of 1/16 to 3/32 inch when placed under 25 - 75 pounds of force per lineal inch, and a thickness of about 0.60 inches. Over the compliant layer is next applied an insulating or dielectric layer having a resistivity of at least 10.sup.14 ohm-centimeters and a thickness of about 0.5 mils. The special drum, which is the image generating medium, receives the charge pattern resulting from collecting the ion particles on the dielectric layer.
    Type: Grant
    Filed: February 2, 1976
    Date of Patent: September 13, 1977
    Assignee: Addressograph Multigraph Corporation
    Inventor: George Thomas Croft
  • Patent number: 3957365
    Abstract: An ion modulator such as a three-layered structure, formed by sandwiching a photoconductor between a metal screen and an insulating layer, which is used as an image source. The apparatus includes an optical system for projecting an image of a graphic original onto the modulator and creating a charge distribution system thereon that can be retained for long periods of time. As part of the apparatus there is included a special drum formed by adhering a resilient-rubber like layer having a compliance that produces a displacement from the normal surface in the range of 1/16 to 3/32 inch when placed under 25 - 75 pounds of force per lineal inch, and a thickness of about 0.60 inches. Over the compliant layer is next applied an insulating or dielectric layer having a resistivity of at least 10.sup.14 ohm-centimeters and a thickness of about 0.5 mils. The special drum, which is the image generating medium, receives the charge pattern resulting from collecting the ion particles on the dielectric layer.
    Type: Grant
    Filed: July 26, 1974
    Date of Patent: May 18, 1976
    Assignee: Addressograph Multigraph Corporation
    Inventor: George Thomas Croft