Patents by Inventor Thomas D. Brostrom

Thomas D. Brostrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969300
    Abstract: An implantable medical lead may include an electrode at a distal portion of the lead that is configured to monitor or provide therapy to a target site. The lead may include a visible indicator that is visible to the naked eye of a clinician at a medial portion of the lead that is configured to indicate when the electrodes of the lead are longitudinally and radially aligned properly to monitor or treat the target site. A clinician may insert the lead into the patient using an introducer sheath inserted to a predetermined depth into the patient and subsequently aligning the distal portion of the lead by orienting the indicator at an entry port of the introducer sheath.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: George W. McFall, Thomas D. Brostrom, Mark T. Marshall, Dina L. Williams, Megan Harris, Keith D. Anderson, Maggie J. Pistella
  • Publication number: 20230270999
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Patent number: 11684775
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: June 27, 2023
    Assignee: Medtronic, Inc.
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Patent number: 11559679
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: January 24, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Maggie J. Pistella, Thomas D. Brostrom, Keith D. Anderson, Gareth Morgan
  • Patent number: 11291833
    Abstract: The disclosure describes a medical electrical lead including bonding strip to bond an elongate electrode coil to an elongate lead body to reduce damage to the medical electrical lead during manipulation of the medical electrical lead. The elongate lead body extends from a proximal end to a distal end and includes a proximal portion and a distal portion. The elongate electrode coil surrounds at least part of the distal portion of the elongate lead body. The bonding strip extends axially along the elongate electrode coil and extends only partially around the circumference of the elongate electrode coil for at least part of the length of the bonding strip, where at least a portion of the bonding strip is bonded to the elongate lead body to fix a portion of the elongate electrode coil to the elongate lead body.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: April 5, 2022
    Assignee: Medtronic, Inc.
    Inventors: Dina L. Williams, Thomas D. Brostrom, George W. McFall, Kathryn R. Parsons, Robert J. Van Drasek
  • Publication number: 20210369386
    Abstract: An implantable medical lead may include an electrode at a distal portion of the lead that is configured to monitor or provide therapy to a target site. The lead may include a visible indicator that is visible to the naked eye of a clinician at a medial portion of the lead that is configured to indicate when the electrodes of the lead are longitudinally and radially aligned properly to monitor or treat the target site. A clinician may insert the lead into the patient using an introducer sheath inserted to a predetermined depth into the patient and subsequently aligning the distal portion of the lead by orienting the indicator at an entry port of the introducer sheath.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: George W. McFall, Thomas D. Brostrom, Mark T. Marshall, Dina L. Williams, Megan Harris, Keith D. Anderson, Maggie J. Pistella
  • Patent number: 11096757
    Abstract: An implantable medical lead may include an electrode at a distal portion of the lead that is configured to monitor or provide therapy to a target site. The lead may include a visible indicator that is visible to the naked eye of a clinician at a medial portion of the lead that is configured to indicate when the electrodes of the lead are longitudinally and radially aligned properly to monitor or treat the target site. A clinician may insert the lead into the patient using an introducer sheath inserted to a predetermined depth into the patient and subsequently aligning the distal portion of the lead by orienting the indicator at an entry port of the introducer sheath.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 24, 2021
    Assignee: Medtronic, Inc.
    Inventors: George W. McFall, Thomas D. Brostrom, Mark T. Marshall, Dina L. Williams, Megan Harris, Keith D. Anderson, Maggie J. Pistella
  • Publication number: 20200222689
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Kevin R. SEIFERT, Maggie J. PISTELLA, Thomas D. BROSTROM, Keith D. ANDERSON, Gareth MORGAN
  • Patent number: 10603483
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: March 31, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Maggie J. Pistella, Thomas D. Brostrom, Keith D. Anderson, Gareth Morgan
  • Publication number: 20200078585
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Publication number: 20200000542
    Abstract: An implantable medical lead may include an electrode at a distal portion of the lead that is configured to monitor or provide therapy to a target site. The lead may include a visible indicator that is visible to the naked eye of a clinician at a medial portion of the lead that is configured to indicate when the electrodes of the lead are longitudinally and radially aligned properly to monitor or treat the target site. A clinician may insert the lead into the patient using an introducer sheath inserted to a predetermined depth into the patient and subsequently aligning the distal portion of the lead by orienting the indicator at an entry port of the introducer sheath.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: George W. McFall, Thomas D. Brostrom, Mark T. Marshall, Dina L. Williams, Megan Harris, Keith D. Anderson, Maggie J. Pistella
  • Patent number: 10478620
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: November 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, James K Carney, Matthew D Bonner, Vladimir Grubac, Douglas S Hine, Thomas D Brostrom, John L Sommer
  • Publication number: 20190344071
    Abstract: The disclosure describes a medical electrical lead including bonding strip to bond an elongate electrode coil to an elongate lead body to reduce damage to the medical electrical lead during manipulation of the medical electrical lead. The elongate lead body extends from a proximal end to a distal end and includes a proximal portion and a distal portion. The elongate electrode coil surrounds at least part of the distal portion of the elongate lead body. The bonding strip extends axially along the elongate electrode coil and extends only partially around the circumference of the elongate electrode coil for at least part of the length of the bonding strip, where at least a portion of the bonding strip is bonded to the elongate lead body to fix a portion of the elongate electrode coil to the elongate lead body.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 14, 2019
    Inventors: Dina L. Williams, Thomas D. Brostrom, George W. McFall, Kathryn R. Parsons, Robert J. Van Drasek
  • Publication number: 20170312494
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 2, 2017
    Inventors: Kevin R. SEIFERT, Maggie J. PISTELLA, Thomas D. BROSTROM, Keith D. ANDERSON, Gareth MORGAN
  • Publication number: 20160059003
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 3, 2016
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Patent number: 9089695
    Abstract: A medical electrical lead may include a conductive electrode shaft located near the distal end within the lead body, a coiled conductor extending within the lead body from the proximal end and coupled to a first end of the conductive electrode shaft, and an electrode located near the distal end of the lead body and coupled to an opposite end of the conductive electrode shaft as the coiled conductor. The lead may also include an energy dissipating structure located near the distal end of the lead body and defining a lumen through which a portion of the coiled conductor extends. The energy dissipating structure may include a region having one or more protrusions extending toward a central axis of the lumen to push the coiled conductor off center relative to the central axis of the lumen.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: July 28, 2015
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Kenneth C. Gardeski, Thomas D. Brostrom, Scott N. Tuominen
  • Patent number: 8849424
    Abstract: This disclosure relates to implantable medical devices (IMDs); in particular, to medical electrical leads having an integrated sensor disposed in a hermetic package and said sensor package accommodates a torque coil and an elongated cable conductor extending therethrough. The integrated sensor can include a pressure sensor, an accelerometer, and the like. The coil and the cable can couple to pacing and sensing electrode coupled to the lead distal to the sensor package. The sensor package is compact, substantially circular in cross section and robust, in that the overall design promote mechanical stability.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 30, 2014
    Assignee: Medtronic, Inc.
    Inventors: Douglas D. Nippoldt, Thomas D. Brostrom, Richard J. O'Brien, Michael A. Schugt, Scott J. Davis, Yaling Fan
  • Publication number: 20140114379
    Abstract: A medical electrical lead may include a conductive electrode shaft located near the distal end within the lead body, a coiled conductor extending within the lead body from the proximal end and coupled to a first end of the conductive electrode shaft, and an electrode located near the distal end of the lead body and coupled to an opposite end of the conductive electrode shaft as the coiled conductor. The lead may also include an energy dissipating structure located near the distal end of the lead body and defining a lumen through which a portion of the coiled conductor extends. The energy dissipating structure may include a region having one or more protrusions extending toward a central axis of the lumen to push the coiled conductor off center relative to the central axis of the lumen.
    Type: Application
    Filed: January 31, 2013
    Publication date: April 24, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Kevin R. Seifert, Kenneth C. Gardeski, Thomas D. Brostrom, Scott N. Tuominen
  • Patent number: 8095225
    Abstract: A lead of an implantable medical device system having an elongated lead body, a sensor coupled to the lead body and extending from a proximal end to a distal end, and a distal lead adaptor having a first arm extending distally from the distal end of the sensor to a first arm end, a second arm extending distally from the distal end of the sensor to a second arm end, and a third arm extending between the first arm end and the second arm end, wherein the first arm, the second arm, and the third arm form an open portion.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: January 10, 2012
    Assignee: Medtronic, Inc.
    Inventors: Douglas D. Nippoldt, Thomas D. Brostrom, Richard J. O'Brien, Michael A. Schugt, Scott J. Davis, Yaling Fan
  • Publication number: 20090248117
    Abstract: A lead of an implantable medical device system having an elongated lead body and a sensor coupled to the lead body and extending from a proximal end to a distal end. The sensor includes a first portion extending from a top to a bottom, and from a proximal end to a distal end and a second portion engaged against the first portion and extending from a top to a bottom, the top of the second portion extending from a proximal end to a distal end. A first flange extends proximally relative to the proximal end of the top of the second portion to a first flange end, and a second flange extends distally relative to the distal end of the top of the second portion to a second flange end, wherein the first flange end is aligned with the proximal end of the first portion and the second flange end is aligned with the distal end of the first portion.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: Medtronic, Inc.
    Inventors: Douglas D. Nippoldt, Thomas D. Brostrom, Richard J. O'Brien, Michael A. Schugt, Scott J. Davis, Yaling Fan