Patents by Inventor Thomas D. Yuschak

Thomas D. Yuschak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7999144
    Abstract: Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 16, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Terry Mazanec, Ravi Arora, Francis P. Daly, Richard Long, Thomas D. Yuschak, Paul W. Neagle, Amanda Glass
  • Patent number: 7931875
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: April 26, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Ravi Arora, Barry L. Yang, David J. Kuhlmann, Thomas D. Yuschak, John Arthur Monahan
  • Publication number: 20100300550
    Abstract: Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Application
    Filed: July 19, 2010
    Publication date: December 2, 2010
    Applicant: VELOCYS, INC.
    Inventors: James Allen Mathias, G. Bradley Chadwell, Dongming Qiu, Anna Lee Y.Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Publication number: 20100258198
    Abstract: The invention provides apparatuses and techniques for controlling flow between a manifold and two or more connecting microchannels. Flow between plural connecting microchannels, that share a common manifold, can be made more uniform by the use of flow straighteners and distributors that equalize flow in connecting channels. Alternatively, flow can be made more uniform by sections of narrowed diameter within the channels. Methods of making apparatus and methods of conducting unit operations in connecting channels are also described.
    Type: Application
    Filed: January 4, 2010
    Publication date: October 14, 2010
    Applicant: Velocys Inc.
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Sean P. Fitzgerald, Ravi Arora, Robert Luzenski, Thomas D. Yuschak
  • Patent number: 7780944
    Abstract: The invention is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The invention enables the combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation. In particular, the microchannel heat exchanger of the present invention enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: August 24, 2010
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, G. Bradley Chadwell, Dongming Qiu, Annalee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Patent number: 7641865
    Abstract: The invention provides apparatuses and techniques for controlling flow between a manifold and two or more connecting microchannels. Flow between plural connecting microchannels, that share a common manifold, can be made more uniform by the use of flow straighteners and distributors that equalize flow in connecting channels. Alternatively, flow can be made more uniform by sections of narrowed diameter within the channels. Methods of making apparatus and methods of conducting unit operations in connecting channels are also described.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 5, 2010
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Sean P. Fitzgerald, Ravi Arora, Robert Luzenski, Thomas D. Yuschak
  • Publication number: 20090074627
    Abstract: Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
    Type: Application
    Filed: August 12, 2008
    Publication date: March 19, 2009
    Applicant: Velocys Inc.
    Inventors: Sean P. Fitzgerald, Anna Lee Tonkovich, Ravi Arora, Dongming Qiu, Thomas D. Yuschak, Laura J. Silva, Wm. Allen Rogers, Kai Jarosch, Matthew B. Schmidt
  • Patent number: 7422910
    Abstract: Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: September 9, 2008
    Assignee: Velocys
    Inventors: Sean P. Fitzgerald, Anna Lee Tonkovich, Ravi Arora, Dongming Qiu, Thomas D. Yuschak, Laura J. Silva, Wm. Allen Rogers, Kai Jarosch, Matthew B. Schmidt
  • Publication number: 20080058574
    Abstract: Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
    Type: Application
    Filed: September 1, 2006
    Publication date: March 6, 2008
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Terry Mazanec, Ravi Arora, Francis P. Daly, Richard Long, Thomas D. Yuschak, Paul W. Neagle, Amanda Glass
  • Patent number: 6989134
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 24, 2006
    Assignee: Velocys Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak
  • Publication number: 20040099712
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak
  • Publication number: 20040033455
    Abstract: Integrated Combustion Reactors (ICRS) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Roger, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 6481204
    Abstract: A clamping device includes an expansible polymer that is disposed in a polymer chamber (14). A heat transfer conduit (22) transports heat transfer fluid and brings it into thermal conductivity with the polymer. By cooling or heating the polymer as needed, the polymer expands and contracts as it melts and freezes, respectively. The volume change of the polymer is used to advance a piston (16). The piston is used to engage upon a surface, e.g., clamp a machine part. In this manner, the surface is disposed between the actuated piston (16) and an immobile plate, causing the surface to become rigidly held in position. When the piston (16) contacts the surface, pressure builds in the polymer chamber(14), which translates into clamping force on the surface.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: November 19, 2002
    Assignee: TCAM Power Workholding, LLC
    Inventors: Thomas D. Yuschak, Edward T. Schneider