Patents by Inventor Thomas Dudley Boone

Thomas Dudley Boone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8092704
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 10, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, Jr., Jordan Asher Katine, Barry Cushing Stipe
  • Patent number: 8035927
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having a lead structure that is self aligned with a magnetic shunt structure. To form an EMR sensor according to an embodiment of the invention, a plurality of layers are deposited to form quantum well structure such as a two dimensional electron gas structure (2DEG). A first mask structure is deposited having two openings, and a material removal process is performed to remove portions of the sensor material from areas exposed by the openings. The distance between the two openings in the first mask defines a distance between a set of leads and the shunt structure. A non-magnetic metal is then deposited. A second mask structure is then formed to define shape of the leads.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: October 11, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Robert E. Fontana, Jr., Bruce Alvin Gurney, Jordan Asher Katine, Sergio Nicoletti
  • Patent number: 8000062
    Abstract: A Lorentz magnetoresistive sensor that employs a gating voltage to control the momentum of charge carriers in a quantum well structure. A gate electrode can be formed at the top of the sensor structure to apply a gate voltage. The application of the gate voltage reduces the momentum of the charge carriers, which makes their movement more easily altered by the presence of a magnetic field, thereby increasing the sensitivity of the sensor.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 16, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Bruce Alvin Gurney, Ernesto E. Marinero
  • Publication number: 20110086440
    Abstract: A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Patent number: 7894159
    Abstract: A magnetic write head having independent trailing and side magnetic shields. The side shields and trailing shields are independently of one another so that they can have throat heights that are different from one another. This advantageously allows the magnetic potential between the write pole and side shields to be controlled independently of one another without relying on the side gap and trailing gap thicknesses. Furthermore, magnetic performance of the write head can be improved because the side shields can be constructed with varying tapered throat heights, while the throat height of the trailing shield can remain constant.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 22, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Byron Hassberg Lengsfield, III, James Terrence Olson, Thomas Dudley Boone, Jr., Petrus Antonius Van Der Heijden
  • Patent number: 7881020
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Publication number: 20100296202
    Abstract: A spin accumulation sensor having a three terminal design that allows the free layer to be located at the air bearing surface. A non-magnetic conductive spin transport layer extends from a free layer structure (located at the ABS) to a reference layer structure removed from the ABS. The sensor includes a current or voltage source for applying a current across a reference layer structure. The current or voltage source has a lead that is connected with the non-magnetic spin transport layer and also to electric ground. Circuitry for measuring a signal voltage measures a voltage between a shield that is electrically connected with the free layer structure and the ground. The free layer structure can include a spin diffusion layer that ensures that all spin current is completely dissipated before reaching the lead to the voltage source, thereby preventing shunting of the spin current to the voltage source.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Inventors: Thomas Dudley Boone, JR., Bruce Alvin Gurney, Neil Smith
  • Publication number: 20100165822
    Abstract: According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body and a ridge extending from the main body and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers. In another embodiment, a method includes forming a near field transducer structure and removing a portion of the near field transducer structure. The method also includes forming a cladding layer adjacent a remaining portion of the near field transducer structure, wherein a portion of the cladding layer extends along the remaining portion of the near field transducer structure and forming a core layer above the cladding layer. Other apparatuses and methods are also included in the invention.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Hamid Balamane, Thomas Dudley Boone, JR., Neil Leslie Robertson, Barry Cushing Stipe, Timothy Carl Strand
  • Publication number: 20100165518
    Abstract: A Lorentz magnetoresistive sensor that employs a gating voltage to control the momentum of charge carriers in a quantum well structure. A gate electrode can be formed at the top of the sensor structure to apply a gate voltage. The application of the gate voltage reduces the momentum of the charge carriers, which makes their movement more easily altered by the presence of a magnetic field, thereby increasing the sensitivity of the sensor.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Thomas Dudley Boone, JR., Bruce Alvin Gurney, Ernesto E. Marinero
  • Publication number: 20100165801
    Abstract: A horizontal cavity, surface emitting laser (HCSEL) with internal polarization rotation is used in thermally assisted recording in hard disk drives. The desired polarization of the laser is accomplished with two beam reflections off of facets within the diode. The facets are formed in a single ion beam etching step. This device can be used in a thermally assisted recording head to produce polarization incident on the disk aligned with the direction of the tracks on the disk.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands BV
    Inventors: Thomas Dudley Boone, JR., Timothy Carl Strand, Bruce David Terris
  • Publication number: 20100163521
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands BV
    Inventors: Hamid Balamane, Thomas Dudley Boone, JR., Jordan Asher Katine, Barry Cushing Stipe
  • Patent number: 7738219
    Abstract: A Lorenz magnetoresistive sensor having a pair of voltage leads and a pair of current leads. The voltage leads are located at either side of one of the current leads and are separated by a distance that is substantially equal to the length of a bit to be measured. The Lorenz magnetoresistive sensor can be, for example an extraordinary magnetoresistive sensor having a quantum well structure such as a two dimensional electron gas and a shunt structure formed on an edge of the quantum well structure opposite the voltage and current leads.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 15, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Bruce Alvin Gurney, Ernesto E. Marinero, Neil Smith
  • Publication number: 20100128392
    Abstract: A magnetic write head for data recording having a magnetic write pole with a stepped magnetic shell structure that defines a secondary flare point. The secondary flare point defined by the magnetic shell portion can be more tightly controlled with respect to its distance from the air bearing surface (ABS) of the write head than can a traditional flare point that is photolithographically on the main pole structure. This allows the effective flare point of the write head to be moved much closer to the ABS than would otherwise be possible using currently available tooling and photolithography techniques. The write head also includes a non-magnetic spacer layer formed over the magnetic shell structure and a trailing magnetic shield, a portion of which is formed over the non-magnetic spacer.
    Type: Application
    Filed: December 23, 2009
    Publication date: May 27, 2010
    Inventors: Christian Rene Bonhote, Thomas Dudley Boone, JR., Quang Le, Jui-Lung Li, Jeffrey S. Lille, Scott Arthur MacDonald, Neil Leslie Robertson, Xhavin Sinha, Petrus Antonius Van Der Heijden
  • Publication number: 20100091407
    Abstract: A magnetic write head for data recording having a magnetic write pole with a stepped magnetic shell structure that defines a secondary flare point. The secondary flare point defined by the magnetic shell portion can be more tightly controlled with respect to its distance from the air bearing surface (ABS) of the write head than can a traditional flare point that is photolithographically on the main pole structure. This allows the effective flare point of the write head to be moved much closer to the ABS than would otherwise be possible using currently available tooling and photolithography techniques. The write head also includes a non-magnetic spacer layer formed over the magnetic shell structure that is recessed from the ABS by a distance that is greater than that of the magnetic shell portion. A magnetic shield is formed over the magnetic shell and non-magnetic spacer.
    Type: Application
    Filed: December 23, 2009
    Publication date: April 15, 2010
    Inventors: Christian Rene Bonhote, Thomas Dudley Boone, JR., Quang Le, Jui-Lung Li, Jeffrey S. Lille, Scott Arthur MacDonald, Neil Leslie Robertson, Xhavin Sinha, Petrus Antonius Van Der Heijden
  • Publication number: 20090190269
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having a lead structure that is self aligned with a magnetic shunt structure. To form an EMR sensor according to an embodiment of the invention, a plurality of layers are deposited to form quantum well structure such as a two dimensional electron gas structure (2DEG). A first mask structure is deposited having two openings, and a material removal process is performed to remove portions of the sensor material from areas exposed by the openings. The distance between the two openings in the first mask defines a distance between a set of leads and the shunt structure. A non-magnetic metal is then deposited. A second mask structure is then formed to define shape of the leads.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Robert E. Fontana, JR., Bruce Alvin Gurney, Jordan Asher Katine, Sergio Nicoletti
  • Publication number: 20090128963
    Abstract: A Lorenz magnetoresistive sensor having a pair of voltage leads and a pair of current leads. The voltage leads are located at either side of one of the current leads and are separated by a distance that is substantially equal to the length of a bit to be measured. The Lorenz magnetoresistive sensor can be, for example an extraordinary magnetoresistive sensor having a quantum well structure such as a two dimensional electron gas and a shunt structure formed on an edge of the quantum well structure opposite the voltage and current leads.
    Type: Application
    Filed: December 30, 2008
    Publication date: May 21, 2009
    Inventors: Thomas Dudley Boone, JR., Bruce Alvin Gurney, Ernesto E. Marinaro, Neil Smith
  • Patent number: 7508635
    Abstract: An Extraordinary Magnetoresistive Sensor (EMR Sensor) having wide voltage lead tabs for reduced noise and increased signal to noise ratio. The leads can be formed in a triad structure, wherein a pair of voltage leads is located at either side of a current lead, or can be formed in a diad structure having a single voltage lead located at one side of a current lead.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Bruce Alvin Gurney, Ernesto E. Marinero, Neil Smith
  • Publication number: 20080316652
    Abstract: A method for manufacturing a write pole for perpendicular magnetic recording for accurately defining a side shield throat height and write pole flare point. The method includes the formation of a magnetic structure that provides an electronic lapping guide as well as providing the structure for both the side shields and the write pole. The magnetic structure includes a write pole portion and first and second side shield portions. The side shields portions are magnetically connected with the write pole portion in a region in front of an intended air hearing surface plane (e.g. in the direction from which lapping will progress). The side shields portions are each separated from the write pole portion in a region behind the intended air bearing surface plane by notches that terminate at a desired location relative to the intended air bearing surface plane and which open up in a region behind the intended air bearing surface plane.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Christian Rene Bonhote, Thomas Dudley Boone, JR., Ming Jiang, Jordan Asher Katine, Quang Le, Yinshi Liu, Xhavin Sinha, Sue Siyang Zhang, Yi Zheng
  • Patent number: 7466521
    Abstract: An extraordinary magnetoresistive device EMR having a discontinuous shunt structure. The discontinuous shunt structure improves the linearity of response of the EMR device. The EMR device includes a EMR heterostructure that includes an EMR active layer. The heterostructure can include first, second and third semiconductor layers, with the second layer being sandwiched between the first and third layers. The middle, or second semiconductor layer provides a two dimensional electron gas. The heterostructure has first and second opposed sides, with a pair of voltage leads and a pair of current leads connected with the first side of the structure. The discontinuous shunt structure is connected with the second side of the structure and may be in the form of a series of discontinuous, electrically conductive elements, such as semi-spherical gold elements.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Stefan Maat
  • Publication number: 20080278860
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith