Patents by Inventor Thomas E. Biedka

Thomas E. Biedka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8995926
    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Ming-Ju Tsai, Liang Han, Xu Han, Anand Lakshmanan, Nanbo Jin, Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Jayesh Nath, Yijun Zhou, Hao Xu, Yuehui Ouyang, Nirali Shah, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 8971874
    Abstract: Test systems for characterizing devices under test (DUTs) are provided. A test system for testing a DUT in a shunt configuration may include a signal generator and a matching network that is coupled between the signal generator and the DUT and that is optimized to apply desired voltage/current stress to the DUT with reduced source power. The matching network may be configured to provide matching and desired stress levels at two or more frequency bands. In another suitable embodiment, a test system for testing a DUT in a series configuration may include a signal generator, an input matching network coupled between the DUT and a first terminal of the DUT, and an output matching network coupled between the DUT and a second terminal of the DUT. The input and output matching network may be optimized to apply desired voltage/current stress to the DUT with reduced source power.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: March 3, 2015
    Assignee: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, James G. Judkins, Thomas E. Biedka, Ming-Ju Tsai, Robert W. Schlub
  • Patent number: 8912809
    Abstract: A test system for testing an antenna tuning element is provided. The test system may include a tester, a test fixture, and a probing structure. The probing structure may include probe tips configured to mate with corresponding solder bumps formed on a device under test (DUT) containing an antenna tuning element. The DUT may be tested in a shunt or series configuration. The tester may be electrically coupled to the test probe via first and second connectors on the test fixture. An adjustable load circuit that is coupled to the second connector may be configured in a selected state so that a desired amount of electrical stress may be presented to the DUT during testing. The tester may be used to obtain measurement results on the DUT. Systematic effects associated with the test structures may be de-embedded from the measured results to obtain calibrated results.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 16, 2014
    Assignee: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, Ming Tsai, Thomas E. Biedka, Robert W. Schlub, Ruben Caballero
  • Publication number: 20140329558
    Abstract: Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Applicant: Apple Inc.
    Inventors: Dean F. Darnell, Enrique Ayala Vazquez, Hongfei Hu, Yuehui Ouyang, Mattia Pascolini, Robert W. Schlub, Peter Bevelacqua, Hao Xu, Jayesh Nath, Yijun Zhou, Nanbo Jin, David Pratt, Matthew A. Mow, Ming-Ju Tsai, Liang Han, Thomas E. Biedka
  • Publication number: 20140302797
    Abstract: Test systems for characterizing devices under test (DUTs) are provided. A test system for testing a DUT in a shunt configuration may include a signal generator and a matching network that is coupled between the signal generator and the DUT and that is optimized to apply desired voltage/current stress to the DUT with reduced source power. The matching network may be configured to provide matching and desired stress levels at two or more frequency bands. In another suitable embodiment, a test system for testing a DUT in a series configuration may include a signal generator, an input matching network coupled between the DUT and a first terminal of the DUT, and an output matching network coupled between the DUT and a second terminal of the DUT. The input and output matching network may be optimized to apply desired voltage/current stress to the DUT with reduced source power.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 9, 2014
    Applicant: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, James G. Judkins, Thomas E. Biedka, Ming-Ju Tsai, Robert W. Schlub
  • Publication number: 20140266941
    Abstract: An electronic device may be provided with a housing. The housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by a slot. An antenna feed may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground and may feed both an inverted-F antenna structure that is formed from the peripheral metal member and the ground and a slot antenna structure that is formed from the slot. Control circuitry may tune the antenna by controlling adjustable components that are coupled to the peripheral metal member. The adjustable components may include adjustable inductors and adjustable capacitors.
    Type: Application
    Filed: December 4, 2013
    Publication date: September 18, 2014
    Applicant: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Yijun Zhou, Matthew A. Mow, Robert W. Schlub, Erdinc Irci, Salih Yarga, Ming-Ju Tsai, Liang Han, Thomas E. Biedka, Nicholas S. Reimnitz
  • Publication number: 20140087668
    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: Apple Inc
    Inventors: Matthew A. Mow, Thomas E. Biedka, Ming-Ju Tsai, Liang Han, Xu Han, Anand Lakshmanan, Nanbo Jin, Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Jayesh Nath, Yijun Zhou, Hao Xu, Yuehui Ouyang, Nirali Shah, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20130328582
    Abstract: A test system for testing an antenna tuning element is provided. The test system may include a tester, a test fixture, and a probing structure. The probing structure may include probe tips configured to mate with corresponding solder bumps formed on a device under test (DUT) containing an antenna tuning element. The DUT may be tested in a shunt or series configuration. The tester may be electrically coupled to the test probe via first and second connectors on the test fixture. An adjustable load circuit that is coupled to the second connector may be configured in a selected state so that a desired amount of electrical stress may be presented to the DUT during testing. The tester may be used to obtain measurement results on the DUT. Systematic effects associated with the test structures may be de-embedded from the measured results to obtain calibrated results.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Inventors: Liang Han, Matthew A. Mow, Ming Tsai, Thomas E. Biedka, Robert W. Schlub, Ruben Caballero
  • Publication number: 20130257454
    Abstract: A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Inventors: Matthew A. Mow, Rocco V. Dragone, JR., Thomas E. Biedka, Robert W. Schlub, Ruben Caballero
  • Publication number: 20130234741
    Abstract: A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Rocco V. Dragone, JR., Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Robert W. Schlub, Mattia Pascolini, Ruben Caballero
  • Patent number: 8331490
    Abstract: Methods and apparatus for conditioning communications signals based on detection of high-frequency in the polar domain. High-frequency events detected in a phase-difference component of a complex baseband signal in the polar domain are detected and used as a basis for performing hole-blowing on the complex baseband signal in the quadrature domain and/or nonlinear filtering either or both the magnitude and phase-difference components in the polar domain. Alternatively, high-frequency events detected in the phase-difference signal that correlate in time with low-magnitude events detected in a magnitude component of the complex baseband signal are used as a basis for performing hole-blowing on the complex baseband signal in the quadrature domain and/or nonlinear filtering either or both the magnitude and phase-difference components in the polar domain.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Hua Wang, Paul Cheng-Po Liang, Richard W. D. Booth, Stephan V. Schell, Thomas E. Biedka
  • Publication number: 20120100813
    Abstract: A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey radio-frequency (RF) signals bidirectionally between a device under test (DUT) and at least one base station. The DUT may be placed within a test chamber during testing. An antenna mounting structure may surround the DUT. Multiple antennas may be mounted on the antenna mounting structure to transmit and receive RF signals to and from the DUT. A first group of dual-polarized antennas may be coupled to the base station through downlink circuitry. A second group of dual-polarized antennas may be coupled to the base station through uplink circuitry. The uplink and downlink circuitry may each include a splitter/combiner, channel emulators, amplifier circuits, and switch circuitry. The channel emulators and amplifier circuits may be configured to provide desired path loss, spatial interference, and channel characteristics to model real-world wireless network transmission.
    Type: Application
    Filed: March 21, 2011
    Publication date: April 26, 2012
    Inventors: Matt A. Mow, Robert W. Schlub, Rocco V. Dragone, JR., Ruben Caballero, Thomas E. Biedka
  • Patent number: 7688157
    Abstract: A modulation system includes an amplitude modulation path and a phase modulation path coupled to the amplitude modulation path. One of the amplitude modulation path and the phase modulation path receive a reduced current such that the reduced current reduces power consumption by the system. Preferably, the amplitude modulation path receives the reduced current. The amplitude modulation path has a first set of components and a second set of components. The first set of components consumes less power by using slower operation. The second set of components consumes less power by effectively not operating, or being turned off.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: March 30, 2010
    Assignee: Panasonic Corporation
    Inventors: Thomas E. Biedka, Paul Cheng-Po Liang, Gary L. Do
  • Patent number: 7675993
    Abstract: This invention, generally speaking, modifies pulse amplitude modulated signals to reduce the ratio of average power to minimum power. The signal is modified in such a manner that the signal quality remains acceptable. The signal quality is described in terms of the Power Spectral Density (PSD) and the Error Vector Magnitude (EVM).
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: March 9, 2010
    Assignee: Panasonic Corporation
    Inventors: Richard W. D. Booth, Stephan V. Schell, Thomas E. Biedka, Paul Cheng-Po Liang
  • Publication number: 20090257526
    Abstract: Methods and apparatus for conditioning communications signals based on detection of high-frequency in the polar domain. High-frequency events detected in a phase-difference component of a complex baseband signal in the polar domain are detected and used as a basis for performing hole-blowing on the complex baseband signal in the quadrature domain and/or nonlinear filtering either or both the magnitude and phase-difference components in the polar domain. Alternatively, high-frequency events detected in the phase-difference signal that correlate in time with low-magnitude events detected in a magnitude component of the complex baseband signal are used as a basis for performing hole-blowing on the complex baseband signal in the quadrature domain and/or nonlinear filtering either or both the magnitude and phase-difference components in the polar domain.
    Type: Application
    Filed: March 2, 2009
    Publication date: October 15, 2009
    Inventors: Hua Wang, Paul Cheng-Po Liang, Richard W.D. Booth, Stephan V. Schell, Thomas E. Biedka
  • Patent number: 7576615
    Abstract: The present invention, generally speaking, provides a VCO linearization technique applicable to advanced loop architectures. In particular, the linearization technique is applicable to a mostly-digital frequency locked loop (FLL), phase locked loop (PLL) or the like using multi-point modulation. In an exemplary embodiment, a correction table is used to form a corrected control variable that affects one modulation point only (e.g., a fast modulation path) of the multi-point modulation circuit. The other modulation point (e.g., a slow modulation path) of the multi-point modulation circuit is controlled in accordance with an error-forming circuit including a loop filter. The use of correction within the fast path enables the VCO to achieve more rapid phase changes than would otherwise be possible, an advantage in high-data-rate communications applications, for example.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: August 18, 2009
    Assignee: Panasonic Corporation
    Inventor: Thomas E. Biedka
  • Publication number: 20080246550
    Abstract: A modulation system includes an amplitude modulation path and a phase modulation path coupled to the amplitude modulation path. One of the amplitude modulation path and the phase modulation path receive a reduced current such that the reduced current reduces power consumption by the system. Preferably, the amplitude modulation path receives the reduced current. The amplitude modulation path has a first set of components and a second set of components. The first set of components consumes less power by using slower operation. The second set of components consumes less power by effectively not operating, or being turned off.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 9, 2008
    Inventors: Thomas E. Biedka, Paul Cheng-Po Liang, Gary L. Do
  • Patent number: 7054385
    Abstract: This invention, generally speaking, modifies pulse amplitude modulated signals to reduce the ratio of average power to minimum power. The signal is modified in such a manner that the signal quality remains acceptable. The signal quality is described in terms of the Power Spectral Density (PSD) and the Error Vector Magnitude (EVM).
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: May 30, 2006
    Assignee: Tropian, Inc.
    Inventors: Richard W. D. Booth, Stephan V. Schell, Thomas E. Biedka, Paul Cheng-Po Liang
  • Patent number: 7042958
    Abstract: Methods of and apparatus for digitally controlling, with sub-sample resolution, the relative timing of the magnitude and phase paths in a polar modulator. The timing resolution is limited by the dynamic range of the system as opposed to the sample rate. The methods and apparatus of the invention use a digital filter to approximate a sub-sample time delay. Various techniques for approximating a sub-sample time delay using digital signal processing may be used to achieve the approximation. Ideally, the filter will have an all-pass magnitude response and a linear phase response. In practice, the magnitude may be low-pass and the phase may not be perfectly linear. Such deviation from the ideal response will introduce some distortion. However, this distortion may be acceptably small depending on the particular signal being processed.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: May 9, 2006
    Assignee: Tropian, Inc.
    Inventors: Thomas E. Biedka, Wayne S. Lee, Gary L. Do
  • Publication number: 20040247041
    Abstract: Methods of and apparatus for digitally controlling, with sub-sample resolution, the relative timing of the magnitude and phase paths in a polar modulator. The timing resolution is limited by the dynamic range of the system as opposed to the sample rate. The methods and apparatus of the invention use a digital filter to approximate a sub-sample time delay. Various techniques for approximating a sub-sample time delay using digital signal processing may be used to achieve the approximation. Ideally, the filter will have an all-pass magnitude response and a linear phase response. In practice, the magnitude may be low-pass and the phase may not be perfectly linear. Such deviation from the ideal response will introduce some distortion. However, this distortion may be acceptably small depending on the particular signal being processed.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Applicant: Tropian, Inc., a California Corporation
    Inventors: Thomas E. Biedka, Wayne S. Lee, Gary L. Do