Patents by Inventor Thomas E. Drake, Jr.

Thomas E. Drake, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6657733
    Abstract: The present invention detects ultrasonic displacements includes a detection laser to generate a first pulsed laser beam to detect the ultrasonic surface displacements on a surface of the target. Collection optics to collect phase modulated light from the first pulsed laser beam either reflected or scattered by the target. An optical amplifier which amplifies the phase modulated light collected by the collection optics. An interferometer which processes the phase modulated light and generate at least one output signal. A processor that processes the at least one output signal to obtain data representative of the ultrasonic surface displacement at the target.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: December 2, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.
  • Patent number: 6643002
    Abstract: The invention is directed to an ultrasonic testing system. The system tests a manufactured part for various physical attributes, including specific flaws, defects, or composition of materials. The part can be housed in a gantry system that holds the part stable. An energy generator illuminates the part within energy and the part emanates energy from that illumination. Based on the emanations from the part, the system can determined precisely where the part is in free space. The energy illumination device and the receptor have a predetermined relationship in free space. This means the location of the illumination mechanism and the reception mechanism is known. Additionally, the coordinates of the actual testing device also have a predetermined relationship to the illumination device, the reception device, or both.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 4, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.
  • Patent number: 6633384
    Abstract: The present invention for detecting ultrasonic displacements includes a detection laser to generate a first pulsed laser beam to generate the ultrasonic surface displacements on a surface of the target. A second pulsed laser beam to detect the ultrasonic surface displacements on a surface of the target. Collection optics to collect phase modulated light from the first pulsed laser beam either reflected or scattered by the target. An interferometer which processes the phase modulated light and generate at least one output signal. A processor that processes the at least one output signal to obtain data representative of the ultrasonic surface displacements at the target.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 14, 2003
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas E. Drake, Jr., Mark A. Osterkamp
  • Patent number: 6571633
    Abstract: A system and method for delivering a laser beam from a remote laser source through a gantry positioning system for performing ultrasonic testing on a test object. The invention provides for closed-loop error correction of a laser beam delivered through the gantry members of a gantry positioning system (GPS) to ensure unobstructed transmission of the laser beam as the GPS changes operates and changes shape. The invention provides for ultrasonic testing of a test object for identifying material defects by moving the end gantry member of the GPS thereby permitting data acquisition of the test object from various fields of view. The invention also provides for controlling the divergence of the laser beam used for ultrasonic testing.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: June 3, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.
  • Patent number: 6483859
    Abstract: A system and method for laser light amplification provides amplification of a laser light beam emitted from a laser light source as low-amplification seed laser light signal. The low-amplification seed laser light signal is transmitted to an amplification component. The amplification component amplifies the low-amplification seed laser light signal by stimulating emissions of the population inversion provided by a pumping diode to generate an amplified laser light signal. The system and method further directs the amplified laser light signal to an output destination. The result of the present invention is a system and method of operation providing higher pulse rates, improved pointing stability, and optionally variable pulse rates for a variety of uses, including for non-destructive laser ultrasonic testing of materials.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: November 19, 2002
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.
  • Patent number: 6122060
    Abstract: The present invention detects ultrasonic displacements includes a detection laser to generate a first pulsed laser beam to detect the ultrasonic surface displacements on a surface of the target. Collection optics to collect phase modulated light from the first pulsed laser beam either reflected or scattered by the target. An optical amplifier which amplifies the phase modulated light collected by the collection optics. An interferometer which processes the phase modulated light and generate at least one output signal. A processor that processes the at least one output signal to obtain data representative of the ultrasonic surface displacements at the target.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: September 19, 2000
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.
  • Patent number: 6094447
    Abstract: A system and method for reducing wavefront distortion in high-gain diode-pumped laser media by providing a non-uniform current profile to be delivered to a pumping array comprised of laser diodes distributed on a laser medium. A signal processor provides for partitioning an electric current emitted from a diode driver such that the pumping array receives a non-uniform current profile resulting in a controlled thermal gradient near the periphery of the laser substrate. By controlling this thermal gradient at the region where an exit laser beam leaves the laser medium, the thermally-induced exit beam distortion is minimized.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: July 25, 2000
    Assignee: Lockheed Martin Corporation
    Inventor: Thomas E. Drake, Jr.