Patents by Inventor Thomas E. Enright

Thomas E. Enright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9285699
    Abstract: Disclosed is a carrier suitable for use with an electrophotographic developer and an electrophotographic developer containing the carrier. In particular, the carrier is powder coated and comprises a copolymer of cyclohexylmethacrylate and dimethylaminoethylmethacrylate.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: March 15, 2016
    Assignee: XEROX CORPORATION
    Inventors: Bernard A. Kelly, Thomas C. Dombroski, Brian S. Giannetto, Brian E. Moore, Lloyd D. Spencer, Richard P. N. Veregin, Karen A. Moffat, Thomas E. Enright, Valerie M. Farrugia, Michael S. Hawkins, Wafa F. Bashir
  • Publication number: 20150316866
    Abstract: Disclosed is a carrier suitable for use with an electrophotographic developer and an electrophotographic developer containing the carrier. In particular, the carrier is powder coated and comprises a copolymer of cyclohexylmethacrylate and dimethylaminoethylmethacrylate.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: XEROX CORPORATION
    Inventors: Bernard A. Kelly, Thomas C. Dombroski, Brian S. Giannetto, Brian E. Moore, Lloyd D. Spencer, Richard P.N. Veregin, Karen A. Moffat, Thomas E. Enright, Valerie M. Farrugia, Michael S. Hawkins, Wafa F. Bashir
  • Patent number: 8691482
    Abstract: The instant disclosure describes methods for preparing latex resins for coated carriers using surfactant partitioning, which resins exhibit both lower ? potential and greater latex stability, while not adversely affecting particle size, toner charge or other metrics.
    Type: Grant
    Filed: June 1, 2013
    Date of Patent: April 8, 2014
    Assignee: Xerox Corporation
    Inventors: Daryl W Vanbesien, Michael Steven Hawkins, Corey Tracy, Richard P N Veregin, Karen A Moffat, Paul Joseph Gerroir, Thomas E Enright, Valerie Farrugia
  • Patent number: 8581000
    Abstract: Disclosed is a process for preparing a compound of the formula wherein R1 and R1?, R2 and R2?, and R3 are as defined herein, said process comprising (I) reacting a diacid of the formula HOOC—R2—COOH with a diamine of the formula H2N—R3—NH2 to form an acid-terminated oligoamide intermediate of the formula HOOC—R2—CONH—R3—HNCO—R2?—COOH; and (II) reacting the acid-terminated oligoamide intermediate with a monoalcohol of the formula R1—OH in the presence of a tin or organic titanate catalyst, in the absence of a coupling agent, and in the absence of a solvent to form the product. Also disclosed is a composition prepared by the process.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 12, 2013
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Thomas E Enright, Michelle N Chrétien, Barkev Keoshkerian, Daryl W Vanbesien
  • Publication number: 20130260305
    Abstract: The instant disclosure describes methods for preparing latex resins for coated carriers using surfactant partitioning, which resins exhibit both lower ? potential and greater latex stability, while not adversely affecting particle size, toner charge or other metrics.
    Type: Application
    Filed: June 1, 2013
    Publication date: October 3, 2013
    Inventors: Daryl W Vanbesien, Michael Steven Hawkins, Corey Tracy, Richard PN Veregin, Karen A Moffat, Paul Joseph Gerroir, Thomas E Enright, Valerie Farrugia
  • Patent number: 8470932
    Abstract: The methods of manufacturing a curable wax, such as an acrylate of a hydroxyl-terminated polyethylene wax having the structure CH3—(CH2)n—CH2OH, where n=22-24, are disclosed. The methods may include reacting a wax having a transformable functional group and a curable compound in the presence of an organic solvent to form an acrylate. The methods may further include removing excess curable compound using hot water having a temperature of more than 85° C., and solidifying the acrylate. The methods may thereby provide safe and cost effective methods for curable wax production at large scale.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: June 25, 2013
    Assignee: Xerox Corporation
    Inventors: Sarah J. P. Robinson, Thomas E. Enright, Jennifer L. Belelie
  • Patent number: 8461252
    Abstract: The instant disclosure describes methods for preparing latex resins for coated carriers using surfactant partitioning, which resins exhibit both lower ? potential and greater latex stability, while not adversely affecting particle size, toner charge or other metrics.
    Type: Grant
    Filed: November 12, 2011
    Date of Patent: June 11, 2013
    Assignee: Xerox Corporation
    Inventors: Daryl W Vanbesien, Michael Steven Hawkins, Corey Tracy, Richard P N Veregin, Karen A Moffat, Paul Joseph Gerroir, Thomas E Enright, Valerie Farrugia
  • Publication number: 20130123403
    Abstract: The instant disclosure describes methods for preparing latex resins for coated carriers using surfactant partitioning, which resins exhibit both lower ? potential and greater latex stability, while not adversely affecting particle size, toner charge or other metrics.
    Type: Application
    Filed: November 12, 2011
    Publication date: May 16, 2013
    Applicant: XEROX CORPORATION
    Inventors: Daryl W. Vanbesien, Michael Steven Hawkins, Corey Tracy, Richard P.N Veregin, Karen A. Moffat, Paul Joseph Gerroir, Thomas E. Enright, Valerie Farrugia
  • Publication number: 20120309924
    Abstract: Disclosed is a process for preparing a compound of the formula wherein R1 and R1?, R2 and R2?, and R3 are as defined herein, said process comprising (I) reacting a diacid of the formula HOOC—R2—COOH with a diamine of the formula H2N—R3—NH2 to form an acid-terminated oligoamide intermediate of the formula HOOC—R2—CONH—R3—HNCO—R2?—COOH; and (II) reacting the acid-terminated oligoamide intermediate with a monoalcohol of the formula R1—OH in the presence of a tin or organic titanate catalyst, in the absence of a coupling agent, and in the absence of a solvent to form the product. Also disclosed is a composition prepared by the process.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: XEROX CORPORATION
    Inventors: Naveen Chopra, Thomas E. Enright, Michelle N. Chrétien, Barkev Keoshkerian, Daryl W. Vanbesien
  • Patent number: 8207274
    Abstract: The methods of manufacturing a curable wax, such as an acrylate of a hydroxyl-terminated polyethylene wax having the structure CH3—(CH2)n—CH2OH, where n=22-24, and removing a fouled material in a reactor are disclosed. The methods may include reacting a wax having a transformable functional group and a curable compound in the absence of an organic solvent to form an acrylate. The methods may further include removing excess curable compound using hot water having a temperature of more than about 85° C., solidifying the acrylate, removing the acrylate, and removing a fouled material in the reactor by emulsification.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: June 26, 2012
    Assignee: Xerox Corporation
    Inventors: Sarah J. P. Robinson, Thomas E. Enright, Jennifer L. Belelie
  • Publication number: 20110251334
    Abstract: The methods of manufacturing a curable wax, such as an acrylate of a hydroxyl-terminated polyethylene wax having the structure CH3—(CH2)n—CH2OH, where n=22-24, and removing a fouled material in a reactor are disclosed. The methods may include reacting a wax having a transformable functional group and a curable compound in the absence of an organic solvent to form an acrylate. The methods may further include removing excess curable compound using hot water having a temperature of more than about 85° C., solidifying the acrylate, removing the acrylate, and removing a fouled material in the reactor by emulsification.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: XEROX CORPORATION
    Inventors: Sarah J.P. ROBINSON, Thomas E. Enright, Jennifer L. Belelie
  • Publication number: 20110247521
    Abstract: The methods of manufacturing a curable wax, such as an acrylate of a hydroxyl-terminated polyethylene wax having the structure CH3—(CH2)n—CH2OH, where n=22-24, are disclosed. The methods may include reacting a wax having a transformable functional group and a curable compound in the presence of an organic solvent to form an acrylate. The methods may further include removing excess curable compound using hot water having a temperature of more than 85° C., and solidifying the acrylate. The methods may thereby provide safe and cost effective methods for curable wax production at large scale.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: XEROX CORPORATION
    Inventors: Sarah J. P. ROBINSON, Thomas E. ENRIGHT, Jennifer L. BELELIE
  • Publication number: 20110048171
    Abstract: A method for producing metallic nanoparticles in a continuous flow-through reactor comprising combining at least one metallic precursor and at least one radical precursor in a reactant reservoir to form a reactant stream; flowing the reactant stream through at least one channel having a first channel end connected to the reactant reservoir, a second channel end connected to a product reservoir, and at least one clear channel section, which is transparent to activating radiation used to generate a radical reducing agent from the radical precursor, for exposing the reactant stream to a radiation source; exposing the reactant stream in the clear channel section to the radiation source to generate the radical reducing agent, initiate a reaction, and form a product stream comprising metallic nanoparticles; and optionally, collecting the product stream in the product reservoir.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 3, 2011
    Applicant: Xerox Corporation
    Inventors: Thomas E. Enright, Michelle N. Chrétien
  • Patent number: 7417787
    Abstract: An electrophoretic display device includes a display layer of a multiplicity of individual microcapsules containing a display medium therein and conductive substrates, at least one of the conductive substrates being transparent, wherein the display layer is located in between the conductive substrates, and wherein the display medium includes one or more set of colored particles in a dielectric fluid and has an electric conductivity of about 10?11 to about 10?15 S/m. The microcapsules may be made by encapsulating the display medium in the wall forming material of the microcapsules, and for example a complex coacervation process may be used.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 26, 2008
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Gabriel Iftime, Peter M. Kazmaier, Man-Chung Tam, Thomas E. Enright, Marko D. Saban
  • Patent number: 7276565
    Abstract: A process including: heating to a first polymerization temperature a first mixture including a free radical polymerizable monomer, a free radical initiator, and a stable free radical compound to polymerize only a portion of the monomer, resulting in a prepolymer composition; shearing a second mixture including the prepolymer composition, a continuous phase liquid, and a stabilizing compound to create a miniemulsion; and flowing the miniemulsion within a polymerization reactor and heating the miniemulsion at a second polymerization temperature to form polymeric particles wherein the formation of the polymeric particles occurs while the miniemulsion flows within the reactor.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 2, 2007
    Assignee: Xerox Corporation
    Inventors: Thomas E. Enright, Paul D. Szabo, Barkev Keoshkerian
  • Patent number: 7235196
    Abstract: A method for producing a display capsule includes the following steps. A multichromal bead having at least two surfaces differing from each other in optical and electrical characteristics is formed. A dispersing agent on an outer surface of the multichromal bead is applied, preferably via spray coating. The multichromal bead is then encapsulated. The invention is also directed to a method for producing multichromal capsules. A multichromal bead having at least two surfaces differing from each other in optical and electrical characteristics and further includes a charge control additive. A dispersing agent is applied on an outer surface of the multichromal bead to prevent diffusion of the charge control additive from the multichromal bead. The multichromal bead is encapsulated at an encapsulation reaction temperature greater than 40° C.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 26, 2007
    Assignee: Xerox Corporation
    Inventors: Thomas E. Enright, San-Ming Yang, Ahmed Alzamly, Naveen Chopra, Man C. Tam
  • Patent number: 7029817
    Abstract: A toner process comprising the aggregation and coalescence of a sulfonated polyester and a colorant, and wherein said polyester possesses a degree of sulfonation or a sulfonation percentage of from about 0.5 to about 3 mol percent.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: April 18, 2006
    Assignee: Xerox Corporation
    Inventors: Sarah J. P. Robinson, Thomas E. Enright, Alan E. J. Toth, Milan Maric, Michael S. Hawkins, Marko D. Saban, Guerino G. Sacripante, George Liebermann
  • Publication number: 20040260026
    Abstract: A process including:
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Applicant: Xerox Corporation
    Inventors: Thomas E. Enright, Paul D. Szabo, Barkev Keoshkerian
  • Patent number: 6767974
    Abstract: A process including: heating to a first polymerization temperature a first mixture composed of a first free radical polymerizable monomer, a first free radical initiator, and a first stable free radical compound to polymerize only a portion of the first monomer, resulting in a prepolymer composition; shearing a second mixture including the prepolymer composition, a continuous phase liquid, and a stabilizing compound to create a miniemulsion; and heating to a second polymerization temperature the miniemulsion to form polymeric particles, wherein there is added to the second mixture, the miniemulsion, or both the second mixture and the miniemulsion at any time prior to the formation of the polymeric particles a second free radical initiator, a second free radical polymerizable monomer, and an optional second stable free radical compound, wherein at least one of the second initiator and the second monomer includes a functional group, wherein the polymeric particles each includes a compound with the functional
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: July 27, 2004
    Assignee: Xerox Corporation
    Inventors: Barkev Keoshkerian, Thomas E. Enright
  • Patent number: 6764802
    Abstract: A process including: agitating a mixture including a liquid and a plurality of resin particles within a vessel at a first shear condition; circulating a portion of the mixture from the vessel through a mixer; adding not all at once an aggregating agent for the resin particles and mixing the aggregating agent with the circulating mixture portion within the mixer at a second shear condition more intensive than the first shear condition to result in a post-mixer circulating composition; and returning the post-mixer circulating composition to the vessel wherein the post-mixer circulating composition undergoes the agitating at the first shear condition.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: July 20, 2004
    Assignee: Xerox Corporation
    Inventors: Milan Maric, Alan E. J. Toth, Thomas E. Enright, Marko D. Saban