Patents by Inventor Thomas E. Hoff

Thomas E. Hoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11054163
    Abstract: A Thermal Performance Forecast approach is described that can be used to forecast heating and cooling fuel consumption based on changes to user preferences and building-specific parameters that include indoor temperature, building insulation, HVAC system efficiency, and internal gains. A simplified version of the Thermal Performance Forecast approach, called the Approximated Thermal Performance Forecast, provides a single equation that accepts two fundamental input parameters and four ratios that express the relationship between the existing and post-change variables for the building properties to estimate future fuel consumption. The Approximated Thermal Performance Forecast approach marginally sacrifices accuracy for a simplified forecast.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: July 6, 2021
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Publication number: 20210200919
    Abstract: A system and method to evaluate building cooling fuel consumption with the aid of a digital computer is described. The evaluation can be used for quantifying personalized electric and fuel bill savings. Such savings may be associated with investment decisions relating to building envelope improvements; HVAC equipment improvements; delivery system efficiency improvements; and fuel switching. The results can also be used for assessing the cost/benefit of behavioral changes, such as changing thermostat temperature settings. Similarly, the results can be used for optimizing an HVAC control system algorithm based on current and forecasted outdoor temperature and on current and forecasted solar irradiance to satisfy consumer preferences in a least cost manner. Finally, the results can be used to correctly size a photovoltaic (PV) system to satisfy needs prior to investments by anticipating existing energy usage and the associated change in usage based on planned investments.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Inventor: Thomas E. Hoff
  • Patent number: 11047586
    Abstract: HVAC load can be shifted to change indoor temperature. A time series change in HVAC load data is used as input modified scenario values that represent an HVAC load shape. The HVAC load shape is selected to meet desired energy savings goals, such as reducing or flattening peak energy consumption load to reduce demand charges, moving HVAC consumption to take advantage of lower utility rates, or moving HVAC consumption to match PV production. Time series change in indoor temperature data can be calculated using only inputs of time series change in the time series HVAC load data combined with thermal mass, thermal conductivity, and HVAC efficiency. The approach is applicable for both winter and summer and can be applied when the building has an on-site PV system.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: June 29, 2021
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Patent number: 11016130
    Abstract: The accuracy of photovoltaic simulation modeling is predicated upon the selection of a type of solar resource data appropriate to the form of simulation desired. Photovoltaic power simulation requires irradiance data. Photovoltaic energy simulation requires normalized irradiation data. Normalized irradiation is not always available, such as in photovoltaic plant installations where only point measurements of irradiance are sporadically collected or even entirely absent. Normalized irradiation can be estimated through several methodologies, including assuming that normalized irradiation simply equals irradiance, directly estimating normalized irradiation, applying linear interpolation to irradiance, applying linear interpolation to clearness index values, and empirically deriving irradiance weights. The normalized irradiation can then be used to forecast photovoltaic fleet energy production.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: May 25, 2021
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Patent number: 10963605
    Abstract: A system and method to evaluate building heating fuel consumption with the aid of a digital computer is described. The evaluation can be used for quantifying personalized electric and fuel bill savings. Such savings may be associated with investment decisions relating to building envelope improvements; HVAC equipment improvements; delivery system efficiency improvements; and fuel switching. The results can also be used for assessing the cost/benefit of behavioral changes, such as changing thermostat temperature settings. Similarly, the results can be used for optimizing an HVAC control system algorithm based on current and forecasted outdoor temperature and on current and forecasted solar irradiance to satisfy consumer preferences in a least cost manner. Finally, the results can be used to correctly size a photovoltaic (PV) system to satisfy needs prior to investments by anticipating existing energy usage and the associated change in usage based on planned investments.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 30, 2021
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Publication number: 20210048210
    Abstract: A Thermal Performance Forecast approach is described that can be used to forecast heating and cooling fuel consumption based on changes to user preferences and building-specific parameters that include indoor temperature, building insulation, HVAC system efficiency, and internal gains. A simplified version of the Thermal Performance Forecast approach, called the Approximated Thermal Performance Forecast, provides a single equation that accepts two fundamental input parameters and four ratios that express the relationship between the existing and post-change variables for the building properties to estimate future fuel consumption. The Approximated Thermal Performance Forecast approach marginally sacrifices accuracy for a simplified forecast.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventor: Thomas E. Hoff
  • Publication number: 20210021233
    Abstract: A system and method for determining seasonal energy consumption with the aid of a digital computer is provided. Through a power metering energy loads for a building situated in a known location are assessed as measured over a seasonal time period. Outdoor temperatures for the building are assessed as measured over the seasonal time period through a temperature monitoring infrastructure. A digital computer comprising a processor and a memory that is adapted to store program instructions for execution by the processor is operated, the program instructions capable of: expressing each energy load as a function of the outdoor temperature measured at the same time of the seasonal time period in point-intercept form; and taking a slope of the point-intercept form as the fuel rate of energy consumption during the seasonal time period.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 21, 2021
    Inventor: Thomas E. Hoff
  • Publication number: 20210019458
    Abstract: A photovoltaic system's configuration specification can be inferred by an evaluative process that searches through a space of candidate values for the variables in the specification. Each variable is selected in a specific ordering that narrows the field of candidate values. A constant horizon is assumed to account for diffuse irradiance insensitive to specific obstruction locations relative to the photovoltaic system's geographic location. Initial values for the azimuth angle, constant horizon obstruction elevation angle, and tilt angle are determined, followed by final values for these variables. The effects of direct obstructions that block direct irradiance in the areas where the actual horizon and the range of sun path values overlap relative to the geographic location are evaluated to find the exact obstruction elevation angle over a range of azimuth bins or directions. The photovoltaic temperature response coefficient and the inverter rating or power curve of the photovoltaic system are determined.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventor: Thomas E. Hoff
  • Publication number: 20200401742
    Abstract: Improved energy conservation, including realization of a ZNET (Zero Net Energy including Transportation) paradigm, can be encouraged by providing energy consumers with a holistic view of their overall energy consumption. Current energy consumption in terms of space heating, water heating, other electricity, and personal transportation can be modeled by normalizing the respective energy consumption into the same units of energy. Options for reducing energy that can include traditional energy efficiencies, such as cutting down on and avoiding wasteful energy use and switching to energy efficient fixtures, and improving the thermal efficiency and performance of a building, can be modeled. Additional options can also include non-traditional energy efficiencies, such as replacing a gasoline-powered vehicle with an electric vehicle, fuel switching from a water heater fueled by natural gas to a heat pump water heater, and fuel switching from space heating fueled by natural gas to a heat pump space heater.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 24, 2020
    Inventor: Thomas E. Hoff
  • Publication number: 20200380184
    Abstract: Improved energy conservation, including realization of a ZNET (Zero Net Energy including Transportation) paradigm, can be encouraged by providing energy consumers with a holistic view of their overall energy consumption. Current energy consumption in terms of space heating, water heating, other electricity, and personal transportation can be modeled by normalizing the respective energy consumption into the same units of energy. In addition, the passive always-on electricity consumption caused by inactive devices that contributes to the baseload of a building can be identified and addressed by the consumer, as appropriate by expressing baseload as a compound value that combines constant always-on loads and regularly-cycling loads. The baseload is estimated as the peak occurrence in a frequency distribution of net load data, after which the always-on load can be determined by subtracting out any regularly-cycling loads.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventor: Thomas E. Hoff
  • Patent number: 10823442
    Abstract: A system and method for forecasting fuel consumption for indoor thermal conditioning using thermal performance forecast approach with the aid of a digital computer are provided. Average daily outdoor temperatures for a time period are obtained. Historical daily fuel consumption for the time period is obtained. The historical daily fuel consumption is converted into an average daily fuel usage rates for the time period. A continuous frequency distribution of occurrences of the average daily outdoor temperatures is generated. A plot of the daily fuel usage rates versus the average daily outdoor temperatures is created. Fuel consumption for at least a portion of the time period is calculated based on sampling the daily fuel usage rate along a range of average daily outdoor temperatures times the temperatures' respective frequencies of occurrence.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 3, 2020
    Assignee: CLEAN POWER RESEARCH , L.L.C.
    Inventor: Thomas E. Hoff
  • Publication number: 20200342149
    Abstract: Gross energy load can be determined by combining periodic net load statistics, such as provided by a power utility or energy agency, with on-site power generation, such as photovoltaic power generation, as produced over the same time period. The gross energy load provides an indication upon which other types of energy investment choices can be evaluated. These choices can include traditional energy efficiencies, such as implementing electrical efficiency measures, which includes cutting down on and avoiding wasteful energy use and switching to energy efficient fixtures, and improving the thermal efficiency and performance of a building. The choices can also include non-traditional energy efficiencies, such as replacing a gasoline-powered vehicle with an electric vehicle, fuel switching from a water heater fueled by natural gas to a heat pump water heater, and fuel switching from space heating fueled by natural gas to a heat pump space heater.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventor: Thomas E. Hoff
  • Publication number: 20200342373
    Abstract: A system and method for interactively evaluating energy-related investments affecting building envelope with the aid of a digital computer are provided. Obtained is a total amount of fuel purchased for a building over a set period from which an existing amount of the fuel consumed for space heating is derived. Characteristics including thermal performance and furnace and delivery efficiencies of the building for both existing and proposed equipment are obtained, including remotely controlling a heating source inside the building. The thermal performance and furnace and delivery efficiencies characteristics of the existing and proposed equipment are expressed as interrelated ratios. An amount of fuel to be consumed for space heating is evaluated as a function of the existing amount of the fuel consumed for space heating and the ratios of the existing and proposed equipment.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventor: Thomas E. Hoff
  • Patent number: 10803212
    Abstract: A photovoltaic system's configuration specification can be inferred by an evaluative process that searches through a space of candidate values for the variables in the specification. Each variable is selected in a specific ordering that narrows the field of candidate values. A constant horizon is assumed to account for diffuse irradiance insensitive to specific obstruction locations relative to the photovoltaic system's geographic location. Initial values for the azimuth angle, constant horizon obstruction elevation angle, and tilt angle are determined, followed by final values for these variables. The effects of direct obstructions that block direct irradiance in the areas where the actual horizon and the range of sun path values overlap relative to the geographic location are evaluated to find the exact obstruction elevation angle over a range of azimuth bins or directions. The photovoltaic temperature response coefficient and the inverter rating or power curve of the photovoltaic system are determined.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 13, 2020
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Patent number: 10797639
    Abstract: A system and method to analyze building performance without requiring an on-site energy audit or customer input is described. The analysis combines total customer energy load from a power utility with externally-supplied meteorological data to analyze each customer's building performance. Building thermal performance is characterized to produce a rich dataset that the power utility can use in planning and operation, including assessing on-going and forecasted power consumption, and for other purposes, such as providing customers with customized information to inform their energy investment decisions and identifying homes for targeted efficiency funding.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: October 6, 2020
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Patent number: 10789396
    Abstract: Improved energy conservation, including realization of a ZNET (Zero Net Energy including Transportation) paradigm, can be encouraged by providing energy consumers with a holistic view of their overall energy consumption. Current energy consumption in terms of space heating, water heating, other electricity, and personal transportation can be modeled by normalizing the respective energy consumption into the same units of energy. Options for reducing energy that can include traditional energy efficiencies, such as cutting down on and avoiding wasteful energy use and switching to energy efficient fixtures, and improving the thermal efficiency and performance of a building, can be modeled. Additional options can also include non-traditional energy efficiencies, such as replacing a gasoline-powered vehicle with an electric vehicle, fuel switching from a water heater fueled by natural gas to a heat pump water heater, and fuel switching from space heating fueled by natural gas to a heat pump space heater.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: September 29, 2020
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Publication number: 20200285691
    Abstract: Long-term photovoltaic system degradation can be predicted through a simple, low-cost solution. The approach requires the configuration specification for a photovoltaic system, as well as measured photovoltaic production data and solar irradiance, such as measured by a reliable third party source using satellite imagery. Note the configuration specification can be derived. This information is used to simulate photovoltaic power production by the photovoltaic system, which is then evaluated against the measured photovoltaic production data. The simulated production is adjusted to infer degradation that can be projected over time to forecast long-term photovoltaic system degradation.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 10, 2020
    Inventor: Thomas E. Hoff
  • Publication number: 20200271705
    Abstract: The accuracy of photovoltaic simulation modeling is predicated upon the selection of a type of solar resource data appropriate to the form of simulation desired. Photovoltaic power simulation requires irradiance data. Photovoltaic energy simulation requires normalized irradiation data. Normalized irradiation is not always available, such as in photovoltaic plant installations where only point measurements of irradiance are sporadically collected or even entirely absent. Normalized irradiation can be estimated through several methodologies, including assuming that normalized irradiation simply equals irradiance, directly estimating normalized irradiation, applying linear interpolation to irradiance, applying linear interpolation to clearness index values, and empirically deriving irradiance weights. The normalized irradiation can then be used to forecast photovoltaic fleet energy production.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventor: Thomas E. Hoff
  • Patent number: 10747914
    Abstract: Improved energy conservation, including realization of a ZNET (Zero Net Energy including Transportation) paradigm, can be encouraged by providing energy consumers with a holistic view of their overall energy consumption. Current energy consumption in terms of space heating, water heating, other electricity, and personal transportation can be modeled by normalizing the respective energy consumption into the same units of energy. In addition, the passive always-on electricity consumption caused by inactive devices that contributes to the baseload of a building can be identified and addressed by the consumer, as appropriate by expressing baseload as a compound value that combines constant always-on loads and regularly-cycling loads. The baseload is estimated as the peak occurrence in a frequency distribution of net load data, after which the always-on load can be determined by subtracting out any regularly-cycling loads.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: August 18, 2020
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff
  • Patent number: 10740512
    Abstract: A system for tuning a photovoltaic power generation plant forecast with the aid of a digital computer is provided. Global horizontal irradiance (GHI), ambient temperature and wind speed for a photovoltaic power generation plant over a forecast period are obtained. Simulated plane-of-array (POA) irradiance is generated from the GHI and the plant's photovoltaic array configuration as a series of simulated observations. Inaccuracies in GHI conversion are identified and the simulated POA irradiance at each simulated observation is corrected based on the conversion inaccuracies. Simulated module temperature is generated based on the simulated POA irradiance, ambient temperature and wind speed. Simulated power generation over the forecast period is generated based on the simulated POA irradiance, simulated module temperature and the plant's specifications and status.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: August 11, 2020
    Assignee: CLEAN POWER RESEARCH, L.L.C.
    Inventor: Thomas E. Hoff