Patents by Inventor Thomas E. Kindl

Thomas E. Kindl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6576549
    Abstract: A method and structure for forming a metalized blind via. A dielectric layer is formed on a metallic layer, followed by laser drilling a depression in the dielectric layer such that a carbon film that includes the carbon is formed on a sidewall of the depression. If the laser drilling does not expose the metallic layer, then an anisotropic plasma etching, such as a reactive ion etching (RIE), may be used to clean and expose a surface of the metallic layer. The dielectric layer includes a dielectric material having a carbon based polymeric material, such as a permanent photoresist, a polyimide, and advanced solder mask (ASM). The metallic layer includes a metallic material, such as copper, aluminum, and gold. The carbon film is in conductive contact with the metallic layer, and the carbon film is sufficiently conductive to permit electroplating a continuous layer of metal (e.g., copper) directly on the carbon film without need of an electrolessly plated layer underneath the electroplated layer.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 10, 2003
    Assignee: International Business Machines Corporation
    Inventors: Frank D. Egitto, Elizabeth Foster, Raymond T. Galasco, David E. Houser, Mark L. Janecek, Thomas E. Kindl, Jeffrey A. Knight, Stephen W. MacQuarrie, Voya R. Markovich, Luis J. Matienzo, Amarjit S. Rai, David J. Russell, William T. Wike
  • Publication number: 20030054635
    Abstract: A method and structure for forming a metalized blind via. A dielectric layer is formed on a metallic layer, followed by laser drilling a depression in the dielectric layer such that a carbon film that includes the carbon is formed on a sidewall of the depression. If the laser drilling does not expose the metallic layer, then an anisotropic plasma etching, such as a reactive ion etching (RIE), may be used to clean and expose a surface of the metallic layer. The dielectric layer comprises a dielectric material having a carbon based polymeric material, such as a permanent photoresist, a polyimide, and advanced solder mask (ASM). The metallic layer includes a metallic material, such as copper, aluminum, and gold. The carbon film is in conductive contact with the metallic layer, and the carbon film is sufficiently conductive to permit electroplating a continuous layer of metal (e.g., copper) directly on the carbon film without need of an electrolessly plated layer underneath the electroplated layer.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 20, 2003
    Inventors: Frank D. Egitto, Elizabeth Foster, Raymond T. Galasco, David E. Houser, Mark L. Janecek, Thomas E. Kindl, Jeffrey A. Knight, Stephen W. MacQuarrie, Voya R. Markovich, Luis J. Matienzo, Amarjit S. Rai, David J. Russell, William T. Wike
  • Patent number: 6522014
    Abstract: A method and structure for forming a metalized blind via. A dielectric layer is formed on a metallic layer, followed by laser drilling a depression in the dielectric layer such that a carbon film that includes the carbon is formed on a sidewall of the depression. If the laser drilling does not expose the metallic layer, then an anisotropic plasma etching, such as a reactive ion etching (RIE), may be used to clean and expose a surface of the metallic layer. The dielectric layer comprises a dielectric material having a carbon based polymeric material, such as a permanent photoresist, a polyimide, and advanced solder mask (ASM). The metallic layer includes a metallic material, such as copper, aluminum, and gold. The carbon film is in conductive contact with the metallic layer, and the carbon film is sufficiently conductive to permit electroplating a continuous layer of metal (e.g., copper) directly on the carbon film without need of an electrolessly plated layer underneath the electroplated layer.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 18, 2003
    Assignee: International Business Machines Corporation
    Inventors: Frank D. Egitto, Elizabeth Foster, Raymond T. Galasco, David E. Houser, Mark L. Janecek, Thomas E. Kindl, Jeffrey A. Knight, Stephen W. MacQuarrie, Voya R. Markovich, Luis J. Matienzo, Amarjit S. Rai, David J. Russell, William T. Wike
  • Patent number: 5435732
    Abstract: A flexible circuit member including a circuitized substrate of a dielectric material having a plurality of apertures therein. Located within and/or bridging selected ones of the apertures are electrical conductors, the conductors having a solder member secured thereto. A frame is also used, the circuitized substrate being secured thereto.
    Type: Grant
    Filed: August 11, 1994
    Date of Patent: July 25, 1995
    Assignee: International Business Machines Corporation
    Inventors: Christopher G. Angulas, Patrick T. Flynn, Joseph Funari, Thomas E. Kindl, Randy L. Orr
  • Patent number: 5334487
    Abstract: The present invention provides a method of forming a pattern of conductive material on dielectric material with access openings or vias through said dielectric material and such a structure. A sheet of conductive material, which is to be circuitized, is provided with a layer of a first photoimageable dielectric material on one face thereof. A layer of a second photoimageable material, such as a conventional photoresist material, is provided on the opposite face of the conductive material. The layer of said first photoimageable material is selected such that it will not be developed by the developer that develops the layer of said second material. The two layers of photoimageable material are pattern-wise exposed to radiation. The second layer of material is developed and the revealed underlying conductive material is etched to form the desired circuit pattern.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: August 2, 1994
    Assignee: International Business Machines Corporation
    Inventors: Thomas E. Kindl, Ronald J. Moore, Paul G. Rickerl
  • Patent number: 5306741
    Abstract: An improved method of laminating a metal foil or sheet to a polyimide material is provided. A solution of a precursor of an intractable (i.e. thermosetting) polyimide is applied to a substrate and the solvent is removed to form a dry tack-free film. Thereafter, a solution of a precursor of a thermoplastic polyimide is applied onto the first film of polyimide and the solvent is removed to form a dry tack-free second film. Both films are then cured concomitantly at a sufficiently rapid rate and low temperature to effect substantial imidization of the polyimide precursors of both films without substantial crosslinking or densification of the polyimides in either of the films. Thereafter, a metal sheet or foil is laminated onto the thermoplastic polyimide film according to the following process. The thermoplastic film is contacted with the sheet or foil of metal to be laminated thereto.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: April 26, 1994
    Assignee: International Business Machines Corporation
    Inventors: Pei C. Chen, Thomas E. Kindl, Paul G. Rickerl, Mark J. Schadt, John G. Stephanie
  • Patent number: 5278724
    Abstract: An electronic package and method of making same wherein the package includes a first substrate (e.g., printed circuit board), a second, flexible circuitized substrate (e.g., polyimide dielectric with conductors thereon) having a semiconductor device (chip) electrically coupled thereto. The outer portions of the flexible circuitized substrate are wrapped about the frame which in turn includes portions thereof which serve to spacedly position the wrapped flexible substrate with respect to the first substrate such that conductors on both substrates may be precisely aligned and electrically coupled in a permanent manner. A method of assembling the invention, including the use of a vacuum head and appropriate heat thermodes, is also defined.
    Type: Grant
    Filed: July 6, 1992
    Date of Patent: January 11, 1994
    Assignee: International Business Machines Corporation
    Inventors: Christopher G. Angulas, Thomas E. Kindl
  • Patent number: 5261155
    Abstract: A method of bonding a flexible circuitized substrate to a circuitized substrate (e.g., printed circuit board) to interconnect selected circuitry of both substrates using solder. Solder paste is applied over conductive pads on the circuitized substrate and organic dewetting material (e.g., epoxy coating) adjacent thereto. The flexible substrate, having conductors located within and/or traversing an aperture in the flexible substrate's dielectric, is positioned above the solder paste and heat is applied (e.g., in an oven). The paste, dewetting from the organic material, "balls up" and substantially surrounds a solder member (ball) attached to a bridging portion of the flexible substrate's conductor, thereby connecting both substrates. A frame member may be used to align the flexible substrate, both during solder member attachment thereto, as well as for aligning the flexible substrate having solder members attached, to the respective solder paste locations on the lower substrate.
    Type: Grant
    Filed: February 5, 1993
    Date of Patent: November 16, 1993
    Assignee: International Business Machines Corporation
    Inventors: Christopher G. Angulas, Patrick T. Flynn, Joseph Funari, Thomas E. Kindl, Randy L. Orr
  • Patent number: 5203075
    Abstract: A method of bonding a flexible circuitized substrate to a circuitized substrate (e.g., printed circuit board) to interconnect selected circuitry of both substrates using solder. Solder paste is applied over conductive pads on the circuitized substrate and organic dewetting material (e.g., epoxy coating) adjacent thereto. The flexible substrate, having conductors located within and/or traversing an aperture in the flexible substrate's dielectric, is positioned above the solder paste and heat is applied (e.g., in an oven). The paste, dewetting from the organic material, "balls up" and substantially surrounds a solder member (ball) attached to a bridging portion of the flexible substrate's conductor, thereby connecting both substrates. A frame member may be used to align the flexible substrate, both during solder member attachment thereto, as well as for aligning the flexible substrate having solder members attached, to the respective solder paste locations on the lower substrate.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: April 20, 1993
    Assignee: Inernational Business Machines
    Inventors: Christopher G. Angulas, Patrick T. Flynn, Joseph Funari, Thomas E. Kindl, Randy L. Orr
  • Patent number: 5156710
    Abstract: An improved method of laminating a metal foil or sheet to a polyimide material is provided. A solution of a precursor of an intractable (i.e. thermosetting) polyimide is applied to a substrate and the solvent is removed to form a dry tack-free film. Thereafter, a solution of a precursor of a thermoplastic polyimide is applied onto the first film of polyimide and the solvent is removed to form a dry tack-free second film. Both films are then cured concomitantly at a sufficiently rapid rate and low temperature to effect substantial imidization of the polyimide precursors of both films without substantial crosslinking or densification of the polyimides in either of the films. Thereafter, a metal sheet or foil is laminated onto the thermoplastic polyimide film according to the following process. The thermoplastic film is contacted with the sheet or foil of metal to be laminated thereto.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: October 20, 1992
    Assignee: International Business Machines Corporation
    Inventors: Pei C. Chen, Thomas E. Kindl, Paul G. Rickerl, Mark J. Schadt, John G. Stephanie
  • Patent number: 5145553
    Abstract: A method of making a flexible circuit member including a stainless steel base member, a dielectric layer (polyimide) on the base member and a conductive circuit (copper) on the dielectric. The circuit member may be first formed as a laminate structure wherein the dielectric polyimide is coated on the stainless steel and appropriately treated (cured). The copper circuitry is then formed utilizing resist application and exposure techniques. Significantly, the copper-containing circuitry and stainless steel base member are simultaneously etched using a cupric chloride etchant solution to effectively remove desired portions of these metallic materials and produce the desired flexible circuit member.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: September 8, 1992
    Assignee: International Business Machines Corporation
    Inventors: Stanley M. Albrechta, Robert J. Clementi, Thomas E. Kindl
  • Patent number: 5133495
    Abstract: A method of bonding a flexible circuitized substrate to a circuitized substrate (e.g., printed circuit board) to interconnect selected circuitry of both substrates using solder. Solder paste is applied over conductive pads on the circuitized substrate and organic dewetting material (e.g., epoxy coating) adjacent thereto. The flexible substrate, having conductors located within and/or traversing an aperture in the flexible substrate's dielectric, is positioned above the solder paste and heat is applied (e.g., in an oven). The paste, dewetting from the organic material, forms a substantially spherical ball and connects to the flexible circuit's conductor, connecting the two. In an alternative embodiment, the solder ball is formed to its desired shape and cooled (to solidification), separate from the flexible circuitized substrate. The flexible substrate is then lowered until the conductor engages the solder ball's upper surface. Heat is then applied to bond solder and conductor.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: July 28, 1992
    Assignee: International Business Machines Corporation
    Inventors: Christopher G. Angulas, Patrick T. Flynn, Thomas E. Kindl, Orr Randy L.
  • Patent number: 4911786
    Abstract: A method of etching polyimide having metallization patterned thereon in which an epoxy resin system provides the etch mask for etching the polyimide and provides a resulting passivation structure overlying the metallization. The polyimide having a metallization pattern thereon is coated with the photoimageable material resists concentrated KOH etching when the epoxy is cured and adheres to the polyimide and the metallized pattern after the KOH etch providing passivation to the metallization. The process includes exposing the layer of photoimageable material to radiation to selectively pattern the material, developing the patterned material revealing the underlying polyimide to be etched, curing the remaining material and etching the revealed polyimide in concentrated KOH to remove the revealed polyimide. The remaining epoxy firmly adheres as a passivation layer for the metallization.
    Type: Grant
    Filed: April 26, 1989
    Date of Patent: March 27, 1990
    Assignee: International Business Machines Corporation
    Inventors: Thomas E. Kindl, Paul G. Rickerl, David J. Russell