Patents by Inventor Thomas E. Kopley

Thomas E. Kopley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230378348
    Abstract: A vertical, FinFET device includes an array of FinFETs comprising a plurality of rows and columns of fins. Each of the fins has a fin length and a fin width, a first fin tip, a second fin tip, and a central region disposed between the first fin tip of a first row of the plurality of rows and the second fin tip of a second row of the plurality of rows. The central region is characterized by an electrical conductivity. The FinFET device also includes a neutralized region including the first fin tip, a region between the first row of the plurality of rows and the second row of the plurality of rows, and the second fin tip. The neutralized region is characterized by a second electrical conductivity less than the electrical conductivity of the central region. The FinFET device further includes an electrical conductor disposed over the neutralized region.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 23, 2023
    Applicant: Nexgen Power Systems, Inc.
    Inventors: Clifford Drowley, Andrew J. Walker, Andrew P. Edwards, Subhash Srinivas Pidaparthi, Thomas E. Kopley
  • Publication number: 20090212279
    Abstract: The nanostructure-based electronic device comprises a solid support, an organic template layer, a nanostructure and electrodes. The organic template layer is on the surface of the solid support, and has a surface comprising a pair of spaced, electrically-charged regions arranged in tandem in an electrically-neutral background. The nanostructure is elongate, is electrically-conducting, and extends between the charged regions. The electrodes are located the surface of the template layer and are at least co-extensive with the charged regions.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Inventors: Maozi Liu, Thomas E. Kopley, S. Jeffrey Rosner
  • Patent number: 7206907
    Abstract: The present method reduces variations in noise and temperature in a mixed-signal circuit including memory. Memory electrically proximate an analog circuit is provided and a digital data word received at the memory. When the data word is not a desired data word, a dummy write to the memory is performed. When the data word is a desired data word, the data word is written to the memory. The mixed-signal circuit includes an analog circuit, memory electrically proximate to the analog circuit and connected to receive digital data words, and a memory controller connected to the memory. The memory controller is operable to cause the memory to write to the memory each of the data words that is a desired data word and additionally to perform a dummy write to memory for each of the data words that is not a desired data word.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: April 17, 2007
    Assignee: Agilent Technologies, Inc
    Inventors: Kenneth D. Poulton, Thomas E. Kopley
  • Patent number: 7096374
    Abstract: The method defines an input state vector that achieves low power consumption when applied to the circuit inputs of a digital circuit in an idle state. The digital circuit includes one or more circuit elements of respective circuit element types. In the method, idle power values including idle power values for each circuit element type. The idle power values for each circuit element type correspond to different states of the inputs of a circuit element of the circuit element type. Additionally the idle power values are used to determine, for each circuit element, states of the inputs of the circuit element that would set the circuit element to a lowest-allowable idle power state when the digital circuit is in the idle state. The states determined for those of the inputs that constitute the circuit inputs define the input state vector. The states are also determined accounting for the logic constraints of the digital circuit.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: August 22, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Vamsi K. Srikantam, Thomas E. Kopley
  • Patent number: 7085942
    Abstract: The method defines an input state vector that achieves low power consumption when applied to the circuit inputs of a digital circuit in an idle state. In the method, independent determinations are performed. Each determination defines a respective set of the input states of the input state vector. Any conflict the definitions of any one or more of the input states is resolved in favor of the definition of the one or more of the input states that achieves the lowest idle power consumption when the input state vector incorporating the one or more of the input states in accordance with the definition is applied to the circuit inputs of the digital circuit in the idle state.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: August 1, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Thomas E. Kopley, Vamsi K. Srikantam
  • Publication number: 20040236973
    Abstract: The method defines an input state vector that achieves low power consumption when applied to the circuit inputs of a digital circuit in an idle state. The digital circuit includes one or more circuit elements of respective circuit element types. In the method, idle power values including idle power values for each circuit element type. The idle power values for each circuit element type correspond to different states of the inputs of a circuit element of the circuit element type. Additionally the idle power values are used to determine, for each circuit element, states of the inputs of the circuit element that would set the circuit element to a lowest-allowable idle power state when the digital circuit is in the idle state. The states determined for those of the inputs that constitute the circuit inputs define the input state vector. The states are also determined accounting for the logic constraints of the digital circuit.
    Type: Application
    Filed: May 21, 2003
    Publication date: November 25, 2004
    Inventors: Vamsi K. Srikantam, Thomas E. Kopley
  • Publication number: 20040236971
    Abstract: The method defines an input state vector that achieves low power consumption when applied to the circuit inputs of a digital circuit in an idle state. In the method, independent determinations are performed. Each determination defines a respective set of the input states of the input state vector. Any conflict the definitions of any one or more of the input states is resolved in favor of the definition of the one or more of the input states that achieves the lowest idle power consumption when the input state vector incorporating the one or more of the input states in accordance with the definition is applied to the circuit inputs of the digital circuit in the idle state.
    Type: Application
    Filed: May 21, 2003
    Publication date: November 25, 2004
    Inventors: Thomas E. Kopley, Vamsi K. Srikantam
  • Patent number: 6707411
    Abstract: The analog-to-digital conversion system comprises an analog-to-digital converter that includes a digital output, memory having a data input and a data output, an output port, an input data bus that extends from the digital output of the analog-to-digital converter to the data input of the memory and an output data bus that extends from the data output of the memory to the output port. The analog-to-digital converter is structured to generate digital samples at a sampling rate. The input data bus is structured to operate at the sampling rate of the ADC. At least one of the data output of the memory, the output data bus and the output port is structured to operate at a maximum rate less than the sampling rate.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: March 16, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth D. Poulton, Thomas E. Kopley, Robert M. R. Neff